
THE AMERICAN STATISTICIAN
, VOL. , NO. , –
https://doi.org/./..

Excuse Me, Do You Have a Moment to Talk About Version Control?

Jennifer Bryan

RStudio and the Department of Statistics, University of British Columbia, Vancouver, Canada

ARTICLE HISTORY
Received July 
Revised October 

KEYWORDS
Data science; Git; GitHub; R
language, R Markdown;
Reproducibility; Workflow

ABSTRACT
Data analysis, statistical research, and teaching statistics have at least one thing in common: these activities
all produce many files! There are data files, source code, figures, tables, prepared reports, and much more.
Most of these files evolve over the course of a project and often need to be shared with others, for reading
or edits, as a project unfolds. Without explicit and structured management, project organization can easily
descend into chaos, taking time away from the primary work and reducing the quality of the final product.
This unhappy result can be avoided by repurposing tools and workflows from the software development
world, namely, distributedversion control. This article describes theuseof the version control systemGit and
the hosting site GitHub for statistical and data scientificworkflows. Special attention is given to projects that
use the statistical language R and, optionally, RMarkdown documents. Supplementarymaterials include an
annotated set of links to step-by-step tutorials, real world examples, and other useful learning resources.
Supplementary materials for this article are available online.

1. Why Git?

Why would a statistician use a version control system, such as
https://git-scm.comGit (Git n.d.)? And what is the point of host-
ing your work online, for example, on https://github.comGitHub
(GitHub n.d.)? Could the gains possibly justify the inevitable
pain?

I say yes, with the zeal of the converted.
There are many benefits of using hosted version control in

your statistical practice:
� Doing your work becomes tightly integrated with organiz-
ing, recording, and disseminating it. It is not a separate,
burdensome task you are tempted to neglect.

� Collaboration is much more structured, with powerful
tools for asynchronous work and managing versions.

� The marginal effort required to create a web presence for a
project is negligible.

� GitHub makes a fantastic course management system for
courses that use R (R Core Team 2017). You can exchange
actual working code with your students and explore the
associated results (Cetinkaya-Rundel and Rundel 2017).

� By using common mechanics across work modes
(research, teaching, analysis), you achieve basic com-
petence quickly and avoid the demoralizing forget-relearn
cycle.

Now the bad news: Git was built neither for the exact
usage described here, nor for broad usability. You will
undoubtedly notice this, so it is best to know in advance.
Happily, there are many helpful tools that mediate your
interactions with Git. GitHub itself is a fine example, as
is https://www.rstudio.com/products/rstudio/ RStudio (RStudio
Integrated Desktop Environment n.d.). In addition to pointing

CONTACT Jennifer Bryan jenny@rstudio.com RStudio and the Department of Statistics, University of British Columbia, Vancouver, BC VT Z, Canada.
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/TAS.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/TAS

out tools that soften Git’s sharpest edges, I recommend specific
habits and attitudes that reduce frustration.

2. What is Git?

Git is a version control system. Its original purpose was to
help groups of developers work collaboratively on big software
projects. Git manages the evolution of a set of files—called a
repository or repo—in a sane, highly structured way. It is like the
“Track Changes” feature from Microsoft Word, but more rigor-
ous, powerful, and scaled up to multiple files.

Git has been repurposed by the data science community
(Ram 2013; Bartlett 2016; Perez-Riverol et al. 2016). We use it to
manage the motley collection of files that make up typical data
analytical projects, which consist of data, figures, reports, and
source code. Even those who identify more as statisticians than
data scientists generally have a similar mix of files that are the
artifacts of a project.

A lone ranger, working on a single computer, can benefit from
adopting version control, but not nearly enough to justify the
pain of installation and workflow upheaval. There aremuch eas-
ier ways to get versioned back ups of files, if that is all you are
worried about.

In my opinion, for new users, the advantages of Git only out-
weigh the disadvantages when you consider the overhead of
working with other people, including your future self. And who
among us does not need to do that? In aGit-basedworkflow, you
document and, optionally, expose yourwork as you go. Commu-
nication and collaboration are the killer apps of version control.
Git’s model of filemanagement can feel uncomfortably rigid, but
it enables the distribution of files across different people, com-
puters, and time.

©  American Statistical Association

http://www.tandfonline.com
https://doi.org/10.1080/00031305.2017.1399928
https://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2017.1399928&domain=pdf&date_stamp=2018-04-19
https://git-scm.com
https://github.com
https://www.rstudio.com/products/rstudio/
mailto:jenny@rstudio.com
http://www.tandfonline.com/r/TAS
http://10.1080/00031305.2017.1399928


THE AMERICAN STATISTICIAN 21

Figure . (a) Solo work with DIY version control via filename. (b) Collaborative work
with DIY version control. (c) Solo work with Git. (d) Collaborative work with Git.

This has an implication for selecting your first Git projects:
you will enjoy the most gain for your pain if you pick a project
that involves sharing rapidly evolving files with others. It is
tempting to pick a quiet, private project. But if you do, you
may never find the benefits of formal version control compelling
enough to cement the new habit.

Many people who do not use Git unwittingly reinvent a poor
man’s version of it. Figure 1 depicts a hypothetical analysis of the
famous Fisher iris data (FISHER 1936, Anderson (1936)), cap-
tured in a single R source file. With informal version control,
contributors create derivative copies of iris.R, decorating the
file name with initials, dates, and other descriptors. Even when
working alone, this leads to multiple versions of iris.R of
indeterminate relatedness (Figure 1(a)). In collaborative settings
based on email distribution, the original file swiftly becomes
part of a complicated phylogeny that no amount of “Track
changes” and good intentions can resolve (Figure 1(b)).

The Git way is to track the evolution of iris.R, through
a series of commits, each equipped with an explanatory mes-
sage. Figure 1(c) depicts this linear, in situ process, with devel-
opment and time flowing from bottom to top. Figure 1(d) shows
the same history for a common collaborative Git workflow,
where contributors work independently but sync regularly to a
common version. Especially important versions get a human-
readable tag, for example, “draft-01,” to signal a meaningful
milestone. There is some pain in adopting the formalism of Git,
but it is worth it.

3. Who Should Read This andWhat to Expect

The target reader is anyone who does statistical research, analy-
sis, or instruction. Those whose work is some combination of
these three may find the work style described here especially
rewarding.

This article does not provide step-by-step instructions on
how to use Git and GitHub. This format would not be effective,
but annotated links to such resources are given in the supple-
mentarymaterials. Instead, I conveywhat theworkflow feels like
and what the payoffs are, with special attention to the statistics
and R context. The goal is to help the Git-curious generate the
activation energy needed to get started.

Figure . With Git, all contributors have a copy of the repo, with all files and the full
history. It is typical to stay in sync through the use of a central remote repo, such as
GitHub. Hosted remotes like GitHub also provide access to the repo through a web
browser.

4. What is GitHub?

We have introduced Git’s powerful structure for file manage-
ment, so where does GitHub fit in? GitHub complements Git
by providing a polished user interface and distribution mecha-
nism for Git repositories. Git is the software you will use locally
to record changes to a set of files. GitHub is a hosting service
that provides a Git-aware home for such projects on the inter-
net. These relationships are shown in Figure 2. GitHub is like
DropBox or Google Drive, but more structured, powerful, and
programmatic.

The remote host acts as the distributor for a Git-managed
project. This allows others to browse project files, explore their
history, sync up with the current version, and perhaps even pro-
pose or make changes. GitHub’s well-designed web interface is a
dramatic improvement over traditional Unix Git servers. Many
operations can be done entirely in the browser, including edit-
ing or adding files. It is easy to create a hyperlink to a specific file
or location in a file, at a specific version, which can make meta-
conversations about project code or reports muchmore produc-
tive. GitHub also offers granular control over who can see, edit,
and administer a project.

Even for private solo projects, there are two advantages to
keeping a synced copy on GitHub:

1. When you are new with Git (or, frankly, even when you
are not), it is common to damage the Git infrastructure
for a project. Note that your files can be intact and safe,
even while the Git tracking is a bit confused. Of course
there are official Git remedies, but sometimes the easi-
est fix is to clone a fresh copy from GitHub, patch things
up with the changes that only exist locally, and move on
with your life. This workaround obviously requires the
existence of a recent copy on GitHub.

2. The highly functional web interfaces mentioned above
are often the most pleasant and natural way to navigate
and search your files, even though all the same informa-
tion exists locally. It is a pleasure to browse through your
own work, across multiple projects or files and across
time, as if it is a well-designed website. You must push
your work to GitHub to enjoy this.



22 J. BRYAN

GitHub issues are another powerful feature of the platform.
Recall that we are repurposingGit, a tool that facilitates software
development. Think of the issues for a project as its bug tracker.
For projects that are not pure software development, we co-opt
this machinery to organize our to-do list more generally. The
basic unit is an issue and you can interact with one in two ways.

First, issues are integrated into the project’s web interface on
GitHub, with a rich set of options for linking to project files and
incremental changes. Second, issues and their associated com-
ment threads appear in your email, just like regular messages
(this can, of course, be configured). The result is that all corre-
spondence about a project comes through your normal chan-
nels, but is also tracked inside the project itself, with excellent
navigability and search capabilities. For software, issues are used
to track bugs and feature requests. In a data analysis project,
you might open an issue to flesh out a specific sub-analysis or to
develop a complicated figure. In a course, we use them to man-
age homework submission, marking, and peer review.

Issues can be assigned to specific people and they can be
labeled, for example, “bug,” “simulation-study,” or “final-exam.”
Coupled with the ability to cross-link issues and the project files
or file changes, you have the power to documentwhy things have
happened in the past and to organize what needs to happen in
the future.

5. Initial System Setup

If I have convinced you to experiment with Git and GitHub,
you need to do some initial setup. These first steps happen once
or, for some steps, once per computer. These instructions are
excerpted from http://happygitwithr.comHappy Git and GitHub
for the useR, which holds battle-tested instructions honed over
several years in http://stat545.com STAT 545 at the University of
British Columbia.

� Register for a free account with GitHub.
� Install Git. Depending on your OS, Git might already be
installed. But many will need to install it or will choose to
update to a more recent version. Some basic configuration
is critical, such as setting your username and email.

� Install a local Git client, optional but highly recommended.
A Git client provides a graphical user interface for Git,
which is otherwise command-line only. If you are an R
user, you will find that RStudio provides a great deal of
this functionality. There are some notable gaps, however,
so youmight still choose to install a dedicated and compre-
hensive Git client such as https://www.sourcetreeapp.com
SourceTree or https://www.gitkraken.com GitKraken. Git
just operates on files, so you can do some operations from
RStudio, others from SourceTree, and others from the
shell.

� Confirm, with a practice repository, that local Git can
send and receive the current version of the repository on
GitHub, known as pushing and pulling, respectively.

Once this setup is done, you are ready to start using Git and
GitHubwith your projects. Here are some general recommenda-
tions for agony reduction. As suggested above, it may be worth
using a graphical front-end for Git, a.k.a. a Git client, versus
restricting yourself to the command line interface. It is fruitful
to establish confidence in basic operations (e.g., make a change,

commit it, push it) before wading into more advanced usage
(e.g., branching). It is helpful to begin with a project that will
provide sustained practice over several months. For example,
usage in a course is great, because it provides a relentless stream
of small deadlines. Finally, it is liberating to realize that no one is
giving out Git style points. It is acceptable to “power-cycle,” that
is, reinitialize the Git repository, to get unstuck.

6. Repositories andWorkflow

For new or existing projects, you will:
� Dedicate a local directory or folder to it.
� Make it an RStudio Project. Optional but recommended;
obviously only applies to projects involving R and users of
RStudio.

� Make it a Git repository.
This setup happens once per project and can happen at

project inception or at any later point. Chances are your project
already lives in a dedicated directory. Making this directory
an RStudio Project and Git repository boils down to allowing
those applications to leave notes for themselves in hidden files
or directories. The project is still a regular directory on your
computer, that you can locate, name, move, and generally inter-
act with as you wish. You do not have to handle it with special
gloves!

The daily workflow is probably not dramatically differ-
ent from what you do currently. You work in the usual
way, writing R scripts or authoring reports in LaTeX or R
Markdown. But instead of only saving individual files, peri-
odically you make a commit, which takes a snapshot of all
the files in the entire project. If you have ever versioned a file
http://www.phdcomics.com/comics/archive.php?comicid=1531by
adding your initials or the date, you have effectively made a
commit, albeit only for a single file. It is a version that is signifi-
cant to you and that you might want to inspect or revert to later.
Periodically, you push commits to GitHub. This is like sharing
a document with colleagues on DropBox or sending it out as an
email attachment. By pushing to GitHub, you make your work
and all your accumulated progress accessible to others.

This is a moderate change to your normal, daily workflow.
It feels weird at first, but quickly becomes second nature. In
http://stat545.com STAT 545 students are required to submit all
coursework via GitHub, starting in week one. Most have never
seenGit before and do not identify as programmers. It is amajor
topic in class and office hours for the first 2 weeks. Thenwe prac-
tically never discuss it again.

7. Commits, Diffs, and Tags

We now connect the fundamental concepts of Git to the data
science workflow:

� repository
� commit
� diff
Recall that a repository or repo is just a directory of files that

Git manages holistically. A commit functions like a snapshot of
all the files in the repo, at a specific moment. Under the hood,
that is not exactly how Git implements things. Although mental

http://happygitwithr.com
http://stat545.com
https://www.sourcetreeapp.com
https://www.gitkraken.com
http://www.phdcomics.com/comics/archive.php?comicid=1531
http://stat545.com


THE AMERICAN STATISTICIAN 23

Figure. Partial commithistory for our iris example, highlightingdiffs, commitmes-
sages, SHAs, and tags.

models do not have to be accurate to be useful, in this case it
helps to align the two.

Figure 3 is another look at our fictional analysis of the iris
data, focusing on the evolution of its script, iris.R. Consider
version A of this file and a modified version, version B. Assume
that version A was part of one Git commit and version B was
part of the next commit. The set of differences between A and B
is called a “diff” andGit users contemplate diffs a lot. Diff inspec-
tion is how you reexplain to yourself how version A differs from
version B. Diff inspection is not limited to adjacent commits.
You can inspect the diffs between any two commits.

In fact, Git’s notion of any specific version of iris.R is as
an accumulation of diffs. If you go back far enough, you find the
commit where the file was created in the first place. Every later
version is stored by Git as that initial version, plus all the inter-
vening diffs in the history that affect the file. We will set these
internal details aside now, but understanding the importance of
these deltas will make Git’s operations less baffling in the long
run.

So, by looking at diffs, it is easy to see how two snapshots
differ, but what about the why?

Every time you make a commit you must also write a short
commit message. Ideally, this conveys the motivation for the
change. Remember, the diff will show the content. When you
revisit a project after a break or need to digest recent changes
made by a colleague, looking at the history, by reading commit
messages and skimming through diffs, is an extremely efficient
way to get up to speed. Figure 3 shows the messages associated
with the last three commits.

Every commit needs some sort of nickname, so you can iden-
tify it. Git does this automatically, assigning each commit what is
called a SHA, a seemingly random string of 40 letters and num-
bers (it is not, in fact, random but is a SHA-1 checksum hash of
the commit). Though you will be exposed to these, you do not
have to handle them directly very often and, when you do, usu-
ally the first seven characters suffice. The commit messages in
Figure 3 are prefixed by such truncated SHAs. You can also des-
ignate certain snapshots as special with a tag, which is a name of
your choosing. In a software project, it is typical to tag a release
with its version, for example, “v1.0.3.” For a manuscript or ana-
lytical project, you might tag the version submitted to a journal
or transmitted to external collaborators. Figure 3 shows a tag,
“draft-01,” associated with the last commit.

8. Markdown is Special on GitHub and for R Users

This may seem unrelated to Git, GitHub, and R, but
it is now necessary to talk about https://daringfireball.
net/projects/markdown/syntax Markdown. Markdown is a
markup language, like HTML and LaTeX, but designed to be
as lightweight as possible. The goal is still to separate form and
content, but also to prioritize human-readability, even at the
cost of fancy features. Markdown is in wide use on sites such
as https://en.support.wordpress.com/markdown/ WordPress,
https://stackoverflow.com/editing-help Stack Overflow, and
https://help.github.com/categories/writing-on-github/ GitHub.
These sites use Markdown because it allows a diverse popu-
lation of site users to create decent-looking web content, with
hyperlinks and some formatting. Do not build this up into some
heroic, LaTeX-level learning task, for it is not. If you can write
an email, you can write Markdown.

Any file written in Markdown is rendered in an HTML-like
way on GitHub. In particular, formatting and links “just work.”
This is the last piece we need to seal my claim that merely push-
ing your project to GitHub gives it a web presence for zero extra
work. If you make even a modest effort to embed a few explana-
tory Markdown files in your repo, you will get an automati-
cally updated project website for free. In particular, if a directory
has a README.md file, GitHub renders it like a home page or
“index.html” when people visit that directory in the browser. It
is very common for a repo to have a top-level README.md, but
each subdirectory can have its own as well.

Markdown is special for R users because of
http://rmarkdown.rstudio.comRMarkdown, which is justMark-
down that includes chunks of R code. Figure 4(a) shows a simple
.Rmd document for our iris example. Again, do not regard R
Markdown as something you must clear your schedule to learn.
If you can write email and a bit of R code, you can write RMark-
down. The https://CRAN.R-project.org/package=rmarkdown
rmarkdown package (Allaire et al. 2017) converts R Mark-
down (.Rmd files) to Markdown (.md files), running the code
and inserting the results, including figures, into the docu-
ment. This is powered by another package, https://CRAN.R-
project.org/package=knitr knitr (Xie 2017b, 2015), under the
hood. This process is made especially easy in RStudio, but is by
no means limited to users of that application. Any R user can
call rmarkdown::render(”foo.Rmd”).

These R-derived Markdown files, if committed and pushed,
then enjoy the usual privileged treatment on GitHub already
described above. Once an .Rmd file has been rendered to .md,
anyone viewing it on GitHub can read the prose, study the
R code, and view the results of running that code, includ-
ing figures. Figure 4(c) shows how the .Rmd document from
Figure 4(a) looks when rendered to .md and pushed to GitHub.
It is the best of all worlds, because the code is revealed and, by
definition, is the code that produced the results. And yet a reader
can gaze upon the product in a web browser, without needing to
download the code, install all necessary dependencies, and run
it.

The overall effect is that a directory that is a GitHub-synced
Git repo can simultaneously be the code-heavy back end of a
project and an outward-facing front end.

https://daringfireball.net/projects/markdown/syntax
https://en.support.wordpress.com/markdown/
https://stackoverflow.com/editing-help
https://help.github.com/categories/writing-on-github/
http://rmarkdown.rstudio.com
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=knitr


24 J. BRYAN

Figure . (a) RMarkdown. (b) R script, equivalent to the RMarkdown in A. (c) The same rendered result is produced by a or b. This is how theMarkdownwill look on GitHub.

You do not, in fact, even need to work in R Mark-
down to exploit this. It http://rmarkdown.rstudio.com/articles
_report_from_r_script.html works with plain R scripts as well.
You can use exactly the same machinery to prepare a rendered
version of an R script, that is, to go from .R to .md. Figure 4(b)
shows an R script that produces exactly the same rendered
report, that is, Figure 4(c), as the R markdown in Figure 4(b).
Again, RStudio makes this especially easy, but is not required.
Once the Markdown file is pushed to GitHub, it is as if the
reader has run your code or is able to look over your shoulder at
your R session. This provides a lightweight system for expos-
ing work-in-progress to collaborators, without slowing down
to create separate reports. Comment lines that begin with #’
are elevated to top-level prose, providing a way to make the
document more welcoming for a reader. Once there are many
prose comments, you might decide to switch from .R to .Rmd,
have proper top-level prose, and move the code down into
chunks.

Before we move on, I want to zoom out and revisit R Mark-
down and the rmarkdown package more generally. Note that R
Markdown can be rendered to many more formats than Mark-
down, including HTML, PDF, and Microsoft Word, and can
incorporate code chunks inmany languages other thanR.Mark-
down is emphasized here because it is extraordinarily useful in
GitHub-hosted projects.Many people are used to targeting other
output formats and overlook this special synergy betweenMark-
down and GitHub.

9. Which Files to Commit

The files in a project arise in different ways and play different
roles. A critical issue for workflow happiness is to decide how to
handle different file types with respect to Git. You can direct Git
to ignore specific files or file types, such as autosaves created by
your editor. This reduces noise and clutter: Git will not pester
you to commit changes to these files and they will not appear in
your GitHub repository. A file that Git does not ignore is said
to be tracked. Here is a useful framework for deciding what to
track:

Source files: These files are created and edited by hand, such
as R scripts and R Markdown or LaTeX files. This could also
include the raw data for an analysis.

Configuration files: These files modify the behavior of a tool,
for example, .gitignore identifies files Git should not track
and some-project.Rproj records RStudio project set-
tings.

Derived products: These files are programmatically generated
from source files and have external value. By executing .R or
rendering .Rmd files, you obtain artifacts such as intermediate
data (e.g., .csv or .rds), figures (e.g., .png or .pdf), and
reports (e.g., .md, .pdf, .docx, or .html).

Intermediates: These files are programmatically generated
and serve a temporary purpose, but are not intrinsically valu-
able (e.g., .aux and .log in LaTeX workflows).

There is clear consensus that source files should be tracked. It
is also common to track project-specific configuration files and
to ignore intermediates. However, reasonable people can dis-
agree about how to handle derived products and whether a spe-
cific file is an intermediate or derived product. Therefore, the
main takeaway is to pick a policy that works for you and adapt
as your needs change. There is no right answer. I would err on
the side of committing more rather than less at first. What else
should you consider when choosing files to track with Git and
share on GitHub?

Is it useful to someone? If so, track and share! There is a taboo
against committing derived products, inherited from Git’s soft-
ware development roots, because the typical product in that con-
text is a platform-specific executable. This rationale, however,
does not apply tomany data science products. Rendered reports,
figures, and cleaned data are often extremely valuable to others.
Make them readily available.

Will it play nicely with Git/GitHub? This boils down to
whether Git diffs will be informative and whether GitHub has
nice handling for the file type. Small-to-medium plain text files
with hard line breaks are ideal, but there are a fewmore pleasant
surprises.

� Some derived files are too miserable to read casually, such
as .csv files of processed results or .html derived from

http://rmarkdown.rstudio.com/articles_report_from_r_script.html


THE AMERICAN STATISTICIAN 25

.Rmd, yet they are still worth tracking with Git. When you
rerun an analysis with updated input data or after updating
R packages, the diffs are often quite modest and help you
pinpoint unexpected changes.

� GitHub has excellent https://help.github.com/categories/
working-with-non-code-files/ support for a variety
of noncode files, such as CSV and TSV. It also
https://help.github.com/articles/rendering-and-diffing-
images/ displays and provides visual diffs for the most
common image formats, which is extremely useful for
spotting unexpected changes in figures.

Will it actively cause problems with Git/GitHub? This boils
down to the file’s likely effect onGit operations. A file that is large
and changing often can make your repository bloated and slow
down pushes and pulls. If a file is binary, such as a Word doc-
ument or Excel spreadsheet, you will not get human-readable
diffs anyway, nor can GitHub display the content in the browser.
Binary files are also a reliable source of merge conflicts (see
below), because they are beyond the reach of Git’s sophisticated
automatic merging logic. A large binary file that changes often
is, therefore, the worst of all worlds. This implies that adop-
tion of Git/GitHub suggests a pivot away from .docx, .xlsx,
and .pdf as primary file formats and toward .Rmd, .md, and
.csv, at least during periods of rapid development.

10. Collaboration

Collaboration is themost compelling reason tomanage a project
with Git and GitHub. My definition of collaboration includes
hands-on participation by multiple people, including your past
and future self, as well as an asymmetric model, in which some
people are active makers and others only read or review.

Consider two different ways to collaborate on a document:
� Edit, save, attach. In this workflow, everyone has one (or
more!) copies of the document, which circulate as email
attachments, accumulating initials and dates in the file-
name. Which one is “master”? Does this question even
make sense anymore?!? If you want a version combining
the edits made by different authors to different sections,
howdo you reconcile the copies into one?All of this usually
gets sorted out by social contract, a fairly manual process,
and at least one miserable person.

� Google Doc. In this workflow, there is only one copy of the
document and it lives in the cloud. Anyone can access the
most recent version on demand. Anyone can edit or com-
ment or propose a change and this is immediately available
to everyone else. Anyone can see who has been editing the
document and how and, if disaster strikes, can revert to a
previous version. A great deal of ambiguity and annoying
reconciliation work has been designed away.

Managing a project via Git/GitHub is much more like the
Google Doc scenario, but also offers some of the attractive fea-
tures of “edit, save, attach.” With Git/GitHub, collaborators can
work offline and there can be independent lines of development,
that is, branches. The killer feature is that Git/GitHub enables
regular and structured reconciliation of all versions of all the files
in the project. It is definitely more complicated than collaborat-
ing on a Google Doc, but also more powerful.

How does collaboration work?

Figure . One contributor has made two new commits and updates the master
copy on GitHub with a push. Another contributor stays up-to-date with a pull from
GitHub.

Git is a decentralized version control system, meaning each
collaborator has their own complete copy of the repo and its his-
tory. Everyone can work offline and/or simultaneously. GitHub
plays the role of another collaborator, but a very special one. By
convention, everyone agrees that GitHub is the clearinghouse,
that is, it holds the master copy of the project. The joke is that
GitHub puts the “central” in decentralized version control. You
pull regularly from GitHub, to receive and integrate changes
made by your collaborators. You also push regularly to GitHub,
to return the favor, and to maintain its status as the comprehen-
sive, authoritative version of the project. Figure 5 depicts this
process.

What if two people have made changes to the repository?
Imagine that your collaboratormakes a change to a file, commits
it locally, and pushes to GitHub.Meanwhile you alsomake a dif-
ferent change to the same file and also commit locally.When you
try to push your commit to GitHub, you will fail because there
are commits onGitHub that you donot have. Youmust pull from
GitHub. The good news is that quite often, this will “just work,”
that is, the GitHub version and your version will merge cleanly.
Git is quite clever at reconciliation and changes to different files
or even distinct parts of the same file will merge. This derives
from the “diff” basedmodel of Git described earlier. After a suc-
cessful merge, you can push your changes and the cycle goes on.

But sometimes it is not clear how to reconcile your changes
with the new ones from GitHub and you get a merge conflict.
Merge conflicts are the most frustrating thing about using Git
and GitHub. You can avoid them if you only work alone, on one
computer, but I have also said that collaboration is the best rea-
son to use GitHub! So this problem must be confronted.

What is a merge conflict? It happens when Git cannot be cer-
tain how to jointly apply the diffs from two different commits
to their common parent. At each location of conflict, you must
pick one version or the other – or create a hybrid—and mark it
as resolved.ManyGit clients have special tooling for this specific
task, which can be very convenient. Once you have resolved all
conflicts, you will be able to finalize the merge and push a ver-
sion integrating your recent changes to GitHub.

The best way to deal with merge conflicts is to prevent them.
This is another reason for all parties to commit, pull, and push
often. Small changes, integrated frequently, in nonbinary files,
are the easiest for Git to automatically merge for you. The diffi-
culty of merging (by Git or by you) is proportional to the evolu-
tionary distance between two lines of work (Wilson et al. 2016).
The presence of frequently changing binary files also increases

https://help.github.com/categories/working-with-non-code-files/
https://help.github.com/articles/rendering-and-diffing-images/


26 J. BRYAN

the burden. So make lots of small commits, sync regularly with
GitHub, and only track binary files with good reason.

11. GitHub asWeb Presence

Simply having a project on GitHub gives it a web presence.
Nonusers of Git/GitHub can visit the project in the browser and
interact with it like a webpage. They can grab a snapshot of all
the files as a ZIP archive by simply clicking a button. People with
GitHub accounts can use Git-specific methods to make their
own copy, that is, a clone or a fork, which make it easy to keep
current with future changes.

GitHub also offers several ways to host a proper website
directly from a repository, collectively known as https://help.
github.com/categories/github-pages-basics/ GitHub Pages. At
one extreme, as long as you have got one Markdown file,
https://github.com/blog/2289-publishing-with-github-pages-
now-as-easy-as-1-2-3 GitHub Pages can create a simple website
automatically. At the other extreme, sophisticated users can
take full advantage of the https://jekyllrb.com Jekyll static
site generator. The STAT 545 website (http://stat545.com
stat545.com, https://github.com/STAT545-UBC/STAT545-UBC.
github.io GitHub repo) falls on the more primitive side.
http://rmarkdown.rstudio.com/rmarkdown_websites.html R
Markdown websites, https://bookdown.org bookdown (Xie
2016, 2017a), and https://bookdown.org/yihui/blogdown/ blog-
down provide several R-focused options for rendering the pages
en masse.

But even before youmake an actual website, certain practices
can http://happygitwithr.com/repo-browsability.html make your
GitHub repository much more browsable. For many projects,
this is more than sufficient for helping people connect with your
work.

Be savvy about file formats. Keep files in the plainest, web-
friendliest form that is compatible with your main goals. As
explained above, Markdown is the ideal format for prose,
because it is just plain text with some markup, but will be dis-
played like HTML on GitHub. Files named README.md are
extra special, acting as the index or landing page for their host
directory. https://help.github.com/articles/rendering-csv-and-tsv-
data/CSV and TSV files also get special treatment, including an
attractive grid layout and search. GitHub has excellent support
for displaying and diffing common image formats.

Use conventional file extensions. GitHub is very code-aware
and will apply proper syntax highlighting for almost any lan-
guage you can think of, if you use one of the standard file exten-
sions. This also has advantages for people searching GitHub and
trying to filter by language.

Use internal links. README.md is a great place to explain
how your project fits together. Any Markdown file can include
relative links to other files in the repo. Embedded images are also
displayed. For figures produced by R code, these links are part
of what rmarkdown takes care of for you, but there is no reason
you cannot do the same yourself for any Markdown file.

12. Where To Go Next?

I have tried to convey the main points about the use of Git and
GitHub in statistical and data analytical settings, but I have left

many things out. There are more advanced topics that will come
up as your use of Git becomes more sophisticated and there are
topics that are only relevant to certain types of reader.

I targeted GitHub—not https://bitbucket.org Bitbucket or
https://about.gitlab.com GitLab—for the sake of specificity.
However, all the big-picture principles and even some mechan-
ics will carry over to these alternative hosting platforms. I am
advocating for the use of hosted version control as a general con-
cept, with GitHub being the best and most common provider
today. I note that many companies and even universities are
starting to make GitHub Enterprise or GitLab available inter-
nally. For example, we host our own instance of GitHub Enter-
prise at UBC to support our Master of Data Science program

Do not fret too much about public versus private reposito-
ries at this point. All the major hosting providers offer private
repositories with flexible control over who can read or write
to the repo. There are many ways to get private repositories
for low or no cost, https://help.github.com/articles/discounted-
organization-accounts/ especially for academics. If you outgrow
this initial arrangement, you can throw some combination of
technical savvy and money at the problem. You can either pay
for a higher level of service, self-host one of these platforms, or
advocate for organization-wide solutions.

Branches and pull requests are an extremely powerful fea-
ture of Git/GitHub and should be your first foray beyond the
basics of commit, push, and pull. A branch is an independent
line of development within a repo, where the intent is usually to
merge it into the master branch when ready. In fact, Figure 1(d)
depicts exactly such a branch-and-merge workflow, which can
be used in both collaborative and solo projects. In a course web-
site, you might work in a branch to update a series of lessons,
while leaving the current version intact in the meantime. A pull
request is a GitHub-specific way to propose changes to a repo
that overlaysGit’s regular branch andmergeworkflowwith facil-
ities for structured review. A pull request can be made between
two branches in the same repo, such as master and bugfix,
or between two independent copies of a repo, an original and a
so-called “fork.” This is the mechanism for making and accept-
ing contributions to open source software projects on GitHub,
including many popular R packages.

13. Call to Action

Statistics is an important part of Data Science, though there is
lively debate about the exact relationship, both past and future
(Donoho 2015). I strongly disagree with glib claims that “Data
Science is just Statistics,” which can be heard in academia.
For reasons both genuine and pragmatic, Statistics departments
want to participate in the growth of Data Science at their respec-
tive universities. So far, their success has been decidedly mixed
(Donoho 2015). In the era of Data Science, staying current can-
not be limited to mathematical and methodological develop-
ments. The holistic work style described here is widely regarded
as current best practice, yet we generally neither practice nor
preach it in academic statistics (but see Cetinkaya-Rundel and
Rundel 2017 for an exception to this rule). It is but one example
of the many ways in which Data Science is not just statistics. By

https://help.github.com/categories/github-pages-basics/
https://github.com/blog/2289-publishing-with-github-pages-now-as-easy-as-1-2-3
https://jekyllrb.com
http://stat545.com
https://github.com/STAT545-UBC/STAT545-UBC.github.io
http://rmarkdown.rstudio.com/rmarkdown_websites.html
https://bookdown.org
https://bookdown.org/yihui/blogdown/
http://happygitwithr.com/repo-browsability.html
https://help.github.com/articles/rendering-csv-and-tsv-data/
https://bitbucket.org
https://about.gitlab.com
https://help.github.com/articles/discounted-organization-accounts/


THE AMERICAN STATISTICIAN 27

acknowledging the importance of modern workflows and tool-
ing, Statistics can solidify its claim to being one of the core dis-
ciplines of Data Science.

SupplementaryMaterials

Appendix: Tutorials, examples, resources: Provides an annotated
set of links for each section of the article, including step-by-
step tutorials, real world examples, and other useful learning
resources.

Acknowledgment

The author gratefully acknowledges the constructive feedback from review-
ers Nicholas Horton, Colin Rundel, and Hadley Wickham.

References

Allaire, J., Cheng, J., Xie, Y., McPherson, J., Chang, W., Allen, J., Wick-
ham, H., Atkins, A., Hyndman, R., and Arslan, R. (2017), rmarkdown:
Dynamic Documents for R. R Package Version 1.5.9000. Available at
http://rmarkdown.rstudio.com [23]

Anderson, E. (1936), “The Species Problem in Iris,” Annals of
the Missouri Botanical Garden, 23, 457–509. Available at
http://www.jstor.org/stable/2394164 [21]

Bartlett, A. (2016), “Git for Humans, Talk at UX Brighton,” available at
https://speakerdeck.com/alicebartlett/git-for-humans [20]

Cetinkaya-Rundel, M., and Rundel, C. W. (2017), “Infrastruc-
ture and Tools for Teaching Computing Throughout the Sta-
tistical Curriculum,” PeerJ Preprints, 5, e3181v1. Available at
https://doi.org/10.7287/peerj.preprints.3181v1 [26]

Donoho, D. (2015), “50 Years of Data Science, Version 1.00,” available at
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataS [26]

FISHER, R. A. (1936), “The Use of Multiple Measurements in Tax-
onomic Problems,” Annals of Eugenics, 7, 179–188. Available at
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x [21]

Git (n.d.). Available at https://git-scm.com [20]
GitHub (n.d.). Available at https://github.com [20]
Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T., Uszkoreit, J.,

da Veiga Leprevost, F., Fufezan, C., Ternent, T., Eglen, S. J., Katz,
D. S., Pollard, T. J., Konovalov, A., Flight, R. M., Blin, K., and
Vizcano, J. A. (2016), “Ten Simple Rules for Taking Advantage of
Git and Github,” PLOS Computational Biology, 12, 1–11. Available at
https://doi.org/10.1371/journal.pcbi.1004947 [20]

Ram, K. (2013), “Git can Facilitate Greater Reproducibility and Increased
Transparency in Science,” Source Code for Biology and Medicine, 8, 7.
Available at https://doi.org/10.1186/1751-0473-8-7 [20]

RCore Team (2017),R:A Language and Environment for Statistical Comput-
ing, Vienna, Austria: R Foundation for Statistical Computing. Available
at https://www.R-project.org [20]

RStudio Integrated Desktop Environment (n.d.). Available at
https://www.rstudio.com/products/rstudio [20]

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., and Teal, T.
K. (2016), “Good Enough Practices in Scientific Computing,” CoRR
abs/1609.00037. Available at http://arxiv.org/abs/1609.00037 [25]

Xie, Y. (2015),Dynamic Documents with R and knitr (2nd ed.), Boca Raton,
FL: Chapman and Hall/CRC. Availabe at http://yihui.name/knitr/ [23]

——— (2016), bookdown: Authoring Books and Technical Docu-
ments with R Markdown. R Package Version 0.3. Availabe at
https://github.com/rstudio/bookdown [26]

——— (2017a), Bookdown: Authoring Books and Technical Documents with
R Markdown, Boca Raton, FL: Chapman and Hall/CRC. Available at
https://github.com/rstudio/bookdown [26]

——— (2017b), knitr: A General-Purpose Package for Dynamic
Report Generation in R. R Package Version 1.16. Available at
http://yihui.name/knitr/ [23]

http://rmarkdown.rstudio.com
http://www.jstor.org/stable/2394164
https://speakerdeck.com/alicebartlett/git-for-humans
https://doi.org/10.7287/peerj.preprints.3181v1
http://courses.csail.mit.edu/18.337/2015/docs/50YearsDataS
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://git-scm.com
https://github.com
https://doi.org/10.1371/journal.pcbi.1004947
https://doi.org/10.1186/1751-0473-8-7
https://www.R-project.org
https://www.rstudio.com/products/rstudio
http://arxiv.org/abs/1609.00037
http://yihui.name/knitr/
https://github.com/rstudio/bookdown
https://github.com/rstudio/bookdown
http://yihui.name/knitr/

	Abstract
	1.Why Git?
	2.What is Git?
	3.Who Should Read This and What to Expect
	4.What is GitHub?
	5.Initial System Setup
	6.Repositories and Workflow
	7.Commits, Diffs, and Tags
	8.Markdown is Special on GitHub and for R Users
	9.Which Files to Commit
	10.Collaboration
	11.GitHub as Web Presence
	12.Where To Go Next?
	13.Call to Action
	Supplementary Materials
	Acknowledgment
	References

