Meta-Analytic Visualizations

8 November 2021 Modern Research Methods

Logistics

- Group meetings today and tomorrow
- A7 due Friday (11/12) literature search
- A8 due the following Thursday (11/18) coding data from papers you found)
- Draft of poster due Tuesday before Thanksgiving (11/23)
- Will be in-person poster session with other research methods classes (12/2; still working out details)
- Poster awards will be given

Conducting a Meta-analysis

First author	Year	Age (m.)	Ν	
1. bion	2013	18	22	⊢_∎ 1
2. bion	2013	24	25	⊢ _∎(
3. bion	2013	30	20	⊢ − ∎ −−1
4. byers	2009	17	16	
5. grassman	2010	24	12	⊢
6. grassman	2010	48	12	⊢ ∎−−−1
7. markman	1988	45	10	·•
8. spiegel	2011	30	72	₽ ₩ ₽
Grand effect size				•
				-1.00 1.00 2.00 3.0
				Effect size estimate

- 1. Identify topic
- 2. Conduct literature search
- 3. Code studies and calculate ES

4. Plot and analyze data

5. Report and discuss results

Four meta-analytic visualizations

- 1. PRISMA flow diagram
- 2. Forest plot
- 3. Moderator plots

4. Funnel plot

PRISMA flow diagram

- Questions addressed:
 - What is the scope of the literature on topic X?
 - What was your method for identifying papers for a meta-analysis on topic X?
- Standardized diagram for reporting paper selection process for metaanalytic review
- Describes 4 stages: Identification, Screening, Eligibility, Excluded

Making your own PRISMA diagram

```
my_prisma_plot <- prisma2(found = 500, # how many unique papers did you find through database searches (goo
found_other = 10, # how many papers did you find through other sources?
screened = 503, # how many of those papers did you screen by looking at the title/abstract?
screen_exclusions = 400, # how many of those papers that you screened did you exclude?
full_text = 103, # how many papers did you look at the full text for?
full_text_exclusions = NA, # how many papers did you exclude after looking at the ful text?
quantitative = NA, # how many papers went in your final meta-analysis
width = 800, height = 800)
```

database searching through other sources my prisma plot (n = 500)(n = 10)Records excluded, Records screened with reasons (n = 503)(n = 13)Full-text articles assessed Full-text articles excluded. for eligibility with reasons (n = 490)(n = NA)Studies included in meta-analysis (n = NA)

- Point = study
- Size of square = weight
- Length 'arms' = individual confidence intervals (uncertainty)
- Diamond = weighted mean
- Dashed line = ES of 0
- If diamond overlap with dashed line the overall effect sizes does not differ from zero

(Text adapted from slide from A. Cristia; Fig. from Gurevitch et al, 2018)

Forest Plots: Questions addressed

- 1. What is the overall effect size for phenomenon X?
 - Because this estimate reflects data from many more participants than a single study, it should be more accurate than the effect size from a single study.
 - How big is this effect relative to other effects in psychology?
- 2. Does the effect significantly differ from zero?
 - If it does not, this suggests there may be no effect (even though individual studies may show an effect).
- 3. How much variability is there?
 - Are the effects of individual studies roughly the same, or is there a lot of variability?
 - If there's a lot of variability, this suggests there might be an important moderator

ma_data for mutual exclusivity MA

We'll calculate these two columns once you have all the raw data entered for your MA

					Effect size	Variance of effect size	
study_ID	short_cite	expt_num	n	d_calc	d_var_calc	mean_age	response_mode
bedford2013	Beford et al (2013)	1	31	4.0000000	0.2903226	748.7471	behavior
bedford2013	Beford et al (2013)	1	31	3.0000000	0.1774194	739.6161	behavior
beverly2003	Beverly & Estis (2003)	1	5	2.5862069	0.8688466	1765.3390	behavior
beverly2003	Beverly & Estis (2003)	1	5	4.5000000	2.2250000	1795.7760	behavior
beverly2003	Beverly & Estis (2003)	1	5	4.8780488	2.5795360	1217.4750	behavior
bion2013	Bion, Borovsky, & Fernald (2013)	2	22	0.1428571	0.0459184	547.5600	eye-tracking
bion2013	Bion, Borovsky, & Fernald (2013)	2	25	1.1538462	0.0666272	730.0800	eye-tracking
bion2013	Bion, Borovsky, & Fernald (2013)	2	20	1.2857143	0.0913265	912.6000	eye-tracking
byers2009	Byers-Heinlein & Werker (2009)	1	16	0.4210526	0.0680402	517.4270	eye-tracking
byers2009	Byers-Heinlein & Werker (2009)	1	16	-0.1250000	0.0629883	547.8638	eye-tracking

N = 50 effect sizes

Making your own forest plot

- To make a forest plot, we need to calculate the grand mean (pooled effect size estimate)
- To do that, we use a package called *metafor* in R
- The rma() function fits a model that estimates the grand mean effect size taking into account study size
- It's actually a random effect model happy to talk more about the details offline
- The syntax:

model <- rma(effect_size, effect_size_variances)</pre>

Fitting the meta-analytic mode

study_ID	short_cite	expt_num	n	d_calc	d_var_calc	mean_age response_m
bedford2013	Beford et al (2013)	1	31	4.0000000	0.2903226	748.7471 behavior
bedford2013	Beford et al (2013)	1	31	3.0000000	0.1774194	739.6161 behavior
beverly2003	Beverly & Estis (2003)	1	5	2.5862069	0.8688466	1765.3390 behavior
beverly2003	Beverly & Estis (2003)	1	5	4.5000000	2.2250000	1795.7760 behavior
beverly2003	Beverly & Estis (2003)	1	5	4.8780488	2.5795360	1217.4750 behavior
bion2013	Bion, Borovsky, & Fernald (2013)	2	22	0.1428571	0.0459184	547.5600 eye-tracking
bion2013	Bion, Borovsky, & Fernald (2013)	2	25	1.1538462	0.0666272	730.0800 eye-tracking
bion2013	Bion, Borovsky, & Fernald (2013)	2	20	1.2857143	0.0913265	912.6000 eye-tracking
byers2009	Byers-Heinlein & Werker (2009)	1	16	0.4210526	0.0680402	517.4270 eye-tracking
byers2009	Byers-Heinlein & Werker (2009)	1	16	-0.1250000	0.0629883	547.8638 eye-tracking

ma_model	<-	rma ma_	data\$d_	calc ma	_data\$d_var_calc)
ma_model					

Making the forest plot

Use a function in metafor to make forest plot (unfortunately there doesn't exist a good forest plot ggplot function (yet!))

forest(ma_model)

Making a better forest plot

There are lots of modifications you can make to this plot to make it more informative.

You can see all the options here: https://www.rdocumentation.org/packages /metafor/versions/2.4-0/topics/forest.rma.

Moderator plots

- Question addressed: Does the effect size vary by different features of the experiment?
- Two kinds of moderators: Categorical and Continuous

(Fig. from Gurevitch et al, 2018)

ma_data for mutual exclusivity MA

study_ID	short_cite	expt_num	n	d_calc	d_var_calc	mean_age	response_mode
bedford2013	Beford et al (2013)	1	31	4.0000000	0.2903226	748.7471	behavior
bedford2013	Beford et al (2013)	1	31	3.0000000	0.1774194	739.6161	behavior
beverly2003	Beverly & Estis (2003)	1	5	2.5862069	0.8688466	1765.3390	behavior
beverly2003	Beverly & Estis (2003)	1	5	4.5000000	2.2250000	1795.7760	behavior
beverly2003	Beverly & Estis (2003)	1	5	4.8780488	2.5795360	1217.4750	behavior
bion2013	Bion, Borovsky, & Fernald (2013)	2	22	0.1428571	0.0459184	547.5600	eye-tracking
bion2013	Bion, Borovsky, & Fernald (2013)	2	25	1.1538462	0.0666272	730.0800	eye-tracking
bion2013	Bion, Borovsky, & Fernald (2013)	2	20	1.2857143	0.0913265	912.6000	eye-tracking
byers2009	Byers-Heinlein & Werker (2009)	1	16	0.4210526	0.0680402	517.4270	eye-tracking
byers2009	Byers-Heinlein & Werker (2009)	1	16	-0.1250000	0.0629883	547.8638	eye-tracking

N = 50 effect sizes

Making a categorical moderator plot

```
ggplot(ma_data, aes(x = response_mode, y = d_calc)) +
geom_violin() +
geom_point()
```


Making a continuous moderator plot

```
ggplot(ma_data, aes(x = mean_age, y = d_calc)) +
geom_point() +
geom_smooth(method = "lm")
```


Making a better continuous moderator plot

```
ma_data_for_age_plot <- ma_data %>%
mutate(age_months = mean_age/30.4)
```

