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Business

* Qs about syllabus?

* Survey
 Geared toward particular area of research?
* Group vs individual work?
* Lots of support for learning R?

* Lab Friday
* Bring laptop
« Have R, RStudio and tidyverse installed
* Directions on website — we'll help you in lab if stuck



Last Time: Cumulative Science

The Scientific Process
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Today: An introduction to cumulative

science tools
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How do kids learn the
meaning of new
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There are infinite possible meanings in the local environment
when a child hears a new word, how to figure out right one?

But, it gets even harder...
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roposal in the literature

Psychological Review

Copyright 2007 by the American Psychological Association
2007, Vol. 114, No. 2, 245-272

0033-295X/07/$12.00 DOI: 10.1037/0033-295X.114.2.245

How do kids learn the Word Learning as Bayesian Inference

meaning of new
words?

Fei Xu Joshua B. Tenenbaum
University of British Columbia Massachusetts Institute of Technology

The authors present a Bayesian framework for understanding how adults and children learn the meanings
of words. The theory explains how learners can generalize meaningfully from just one or a few positive
examples of a novel word’s referents, by making rational inductive inferences that integrate prior
knowledge about plausible word meanings with the statistical structure of the observed examples. The
theory addresses shortcomings of the two best known approaches to modeling word learning, based on
deductive hypothesis elimination and associative learning. Three experiments with adults and children
test the Bayesian account’s predictions in the context of learning words for object categories at multiple
levels of a taxonomic hierarchy. Results provide strong support for the Bayesian account over competing
accounts, in terms of both quantitative model fits and the ability to explain important qualitative
phenomena. Several extensions of the basic theory are discussed, illustrating the broader potential for
Bayesian models of word learning.

Keywords: word learning, Bayesian inference, concepts, computational modeling




Let'’s try it out

P("dax” means dog) = P("dax” means dalmation) =

P("dax” means dalmation) =
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If I'm picking examples from
the dalmation category, I'm
more likely to pick three
dalmations

If I'm picking examples from
the dog category, it would
be really unlikely to pick
three dalmations

It would be a “suspicious
coincidence”!

Xu and Tenenbaum (2007)



The Size Principle
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Testing the suspicious coincidence effect

N Each participant saw
some "1 example” trials,
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Can you give Mr. Frog all the other rabs?
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Children and adults make this inference
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A theory of how children could learn the meaning
of new words at multiple levels of abstraction.

NUMBER of examples of word
meaning provides information
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Psychological Review
2007, Vol. 114, No. 2, 245-272

Copyright 2007 by the American Psychological Association
0033-295X/07/312.00 DOL: 10.1037/0033-295X.114.2.245

Word Learning as Bayesian Inference

Fei Xu Joshua B. Tenenbaum
University of British Columbia Massachusetts Institute of Technology
The authors present a Bayesian framework for und ding how adults and children learn the meanings

of words. The theory explains how learners can generalize meaningfully from just one or a few positive
examples of a novel word’s referents, by making rational inductive inferences that integrate prior
knowledge about plausible word meanings with the statistical structure of the observed examples. The
theory addresses shortcomings of the two best known approaches to modeling word learning, based on
deductive hypothesis elimination and associative learning. Three experiments with adults and children
test the Bayesian account’s predictions in the context of learning words for object categories at multiple
levels of a taxonomic hierarchy. Results provide strong support for the Bayesian account over competing
accounts, in terms of both quantitative model fits and the ability to explain important qualitative
phenomena. Several extensions of the basic theory are discussed, illustrating the broader potential for
Bayesian models of word learning.

Keywords: word learning, Bayesian inference, concepts, computational modeling
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Word Learning as Bayesian Inference = Google Scholar word learning as bayesian inference
Fei Xu Joshua B. Tenenbaum
University of British Columbia Massachusetts Institute of Technology o Artlcles About 194.000 results (0 23 SEC)

The authors present a Bayesian framework for understanding how adults and children learn the meanings
of words. The theory explains how learners can generalize meaningfully from just one or a few positive
examples of a novel word’s referents, by making rational inductive inferences that integrate prior

knowledge about plausible word ings with the statistical structure of the observed examples. The Any time Word learning as Bayesian inference_
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accounts, in terms of both quantitative model fits and the ability to explain important qualitative Since 2016 the meanings of words. The theory explains how learners can generalize meaningfully from
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Suspicious-Coincidence Effect Sanr
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Your theory is wrong...

“The striking finding that led Xu and
Tenenbaum (2007b) to this conclusion—
broader generalization from a single instance
than from three (nearly identical) instances—is
also consistent with mechanistic accounts
couched in terms of memories and
representations for learning events. [...] In the
case of the suspicious-coincidence effect, two
such task factors may be particularly critical:
The fact that the exemplars are simultaneously
visible in the task space and that they are
nearly identical instances in close spatial
proximity. “ — Spencer, et al. (2011)

Your theory predicts that
it's just NUMBER of
examples but other things
might matter too.



Sequential presentation of exemplars

Here is a rab. 100 - . One Exemplar
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..sequential makes the effect reverse??



Resolving the conflict in this literature

Did a replication of both studies.

?? | want to understand
this discrepancy, and
build on it

REPLICATE = Repeat a study

with the same
population, hypothesis,

experimental design, and
analysis plan and get same
result (Patil, et al. 2016)




Replicating previous results
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» Stimuli and code from original experiments

- weren't available so | had to implement using
- Javascript and HTML
(https://tinyurl.com/ry3tvyz)

* Cleaned and analyzed data in R
* Betfore | ran my study, | pre-registered
experimental code/analysis plan
Q (https://ost.io/wgvew) - why?

» Conducted a replication of these studies online
ek Uusing a large sample (N = 600) of participants




Reproducibility

REPRODUCE = Repeat procedure (e.g. experimental

code, analysis code) and get same result

 All my code is available online so that other researchers
can reproduce my experiment and analysis

* Website called Github (https://github.com/) 0 GitHub
* https://github.com/mllewis/XTMEM




‘erence between

A methodological di
two studies...

« Xu and Tenenbaum (2007) — 1 trial
a3 first, then 3 trial
* Spencer et al (2011) — 3 trial first

then 1 trial

» Might this matter? Who knows — ['ll
test both.




What did | find?

Rep“cation of Replication of
Xu and Tenenbaum (2007) Spencer et al. (2011)
Herelsarab. simultaneous simultaneous sequential sequential
a 1-3 order 3-1 order 1-3 order 3-1 order
as 1.00 1 —
N condition
Can you give Mr. Frog all the other rabs? qJ
O
rab, click on it below. When you have given all the rabs, click the Next button -8 075_
;5‘” - ﬁ ﬁ‘ i K'r .
o
. 2 iy 050'
PN+ J | =0
o P B (E g/ 5 025-
o)
— ® “ & —_ O
& {e\ e 0.00 -
1 2 3 4 5 6 7 8 9 10 11 12
Experiment

(Lewis & Frank, Psych. Science, 2018)



Basic-Level Choices (%)

Trial order matters!

* Only see the suspicious coincidence effect in the 1-3 ordering

e How can we test this idea?
* Effect sizes and meta-analysis
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/ Big effect —
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Slightly smaller —

Tenenbaum, Tenenbaum,

Experiment Cohen's d [95% CI]
XT E1 2.00 [1.27, 2.73]
XT E2 — . 1.01 [0.53, 1.49]
SPSS Ef . 1.12[0.44, 1.80]
All — 1.33[0.75, 1.92]
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Prop. basic-level choices
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Peer Review Process

Running head: THE SUSPICIOUS COINCIDENCE EFFECT REVISITED 1
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Tools | used in this project

* Data analysis and visualization in R
* Preregistration
* Replications

* Reproducible workflows (e.g. Github)

* Effect sizes and meta-analysis

* In this class, you will learn about all of these tools

* You will not master any of them, but my goal is to introduce
them to you so you can have the ability to learn more



* Bring laptop, install R and R Studio

Chapter 3 Getting started with R

Robots are nice to work with.
—Roger Zelazny13

In this chapter I'll discuss how to get started in R. I'll briefly talk about how to download and install R,
but most of the chapter will be focused on getting you started typing R commands. Our goal in this
chapter is not to learn any statistical concepts: we’re just trying to learn the basics of how R works
and get comfortable interacting with the system. To do this, we’ll spend a bit of time using R as a
simple calculator, since that’s the easiest thing to do with R. In doing so, you’ll get a bit of a feel for
what it’s like to work in R. From there I’ll introduce some very basic programming ideas: in particular,
I’ll talk about the idea of defining variables to store information, and a few things that you can do with

these variables.

part of the tidyverse

‘ t'i dyve rse Reference

1.3.1.9000

Welcome to the Tidyverse

Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain Francois, Garrett Grolemund, Alex Hayes,
Lionel Henry, Jim Hester, Max Kuhn, Thomas Lin Pedersen, Evan Miller,
Stephan Milton Bache, Kirill Miller, Jeroen Ooms, David Robinson,
Dana Paige Seidel, Vitalie Spinu, Kohske Takahashi, Davis Vaughan,
Claus Wilke, Kara Woo, Hiroaki Yutani



