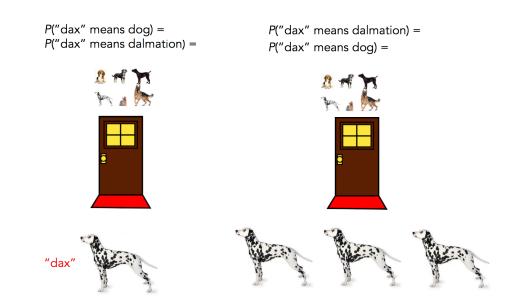
Intro to grammar of graphics (ggplot2)

15 September 2020 Modern Research Methods

Artwork by @allison_horst

I believe that there are two kinds of people: those who space their R code and those who do not. Pretty clear which group I belong to **#rstatsmemes #RStats**

...



6:43 PM · Sep 11, 2021 · Twitter Web App

36 Retweets 5 Quote Tweets 389 Likes

Business

- Quiz 1:
 - Folks did very well
 - "suspicious coincidence effect"
- Assignment 1 due tomorrow at noon
- Office hours today at 2:45 in Porter Hall
- Okay to share exemplary responses?

Last Time: dplyr verbs

	-	

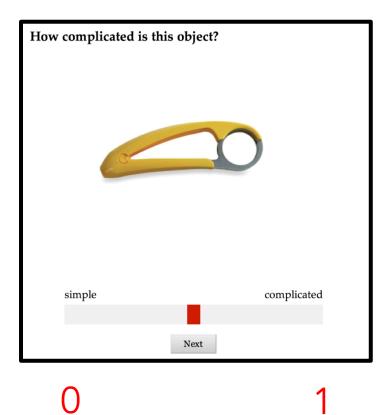
Extract variables with **select()**

Extract cases with filter()

	\rightarrow		

Arrange cases, with **arrange()**.

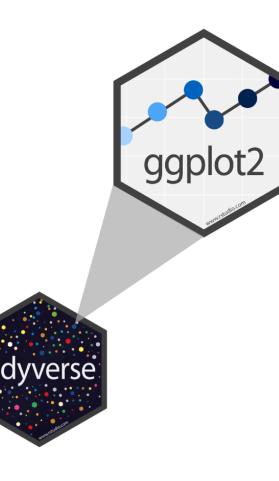
Make tables of summaries with **summarise()**.


Make new variables, with **mutate()**.

Measuring "Conceptual Complexity"

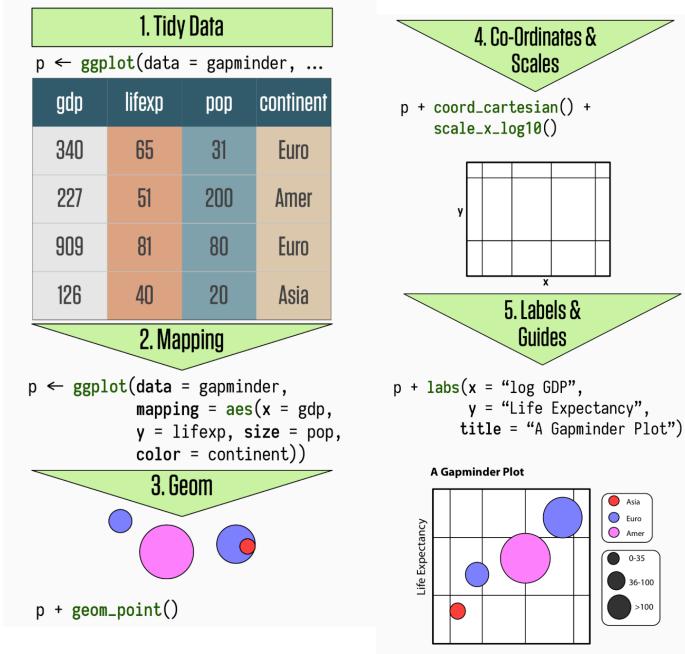
(Lewis & Frank, 2016)

Measuring "Conceptual Complexity"


Design:

- Each participant rated an image of a ball and of a circuit first
- Then, random sample of 10 additional objects
- Ran the study twice each with 60 participants

sample	÷	subjectid 🗘	objectid 🗦	rating 🗧 🗘
	1	1	54	0.24331551
	1	5	54	0.43315508
	1	6	54	0.26470588
	1	10	54	0.18181818
	1	18	54	0.13636364
	1	36	54	0.21122995
	1	40	54	0.35828877
	1	42	54	0.73529412
	1	53	54	0.42780749
	1	58	54	0.40641711
	1	1	57	0.76203209
1				


What are some analytical questions we could ask of this data?

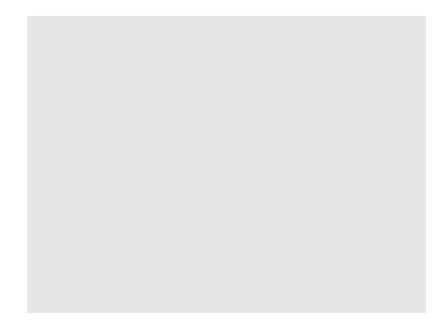
ggplot2

- **ggplot2** is tidyverse's data visualization package
- The gg in "ggplot2" stands for Grammar of Graphics
- It is inspired by the book **Grammar of Graphics** by Leland Wilkinson
- A grammar of graphics is a tool that enables us to concisely describe the components of a graphic

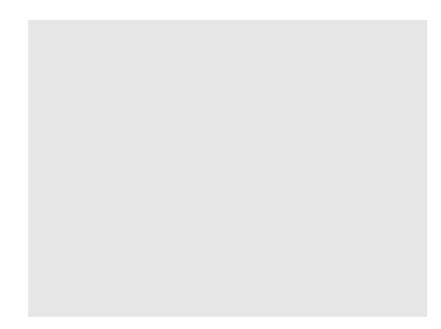
	1. Tidy Data				
What data do you want to plot? \longrightarrow	$p \leftarrow ggplot(data = gapminder, .$				
	gdp	lifexp	рор	continent	
	340	65	31	Euro	
	227	51	200	Amer	
	909	81	80	Euro	
	126	40	20	Asia	
Map variables to <u>aesthetics</u>					
What kind of plot do you want					

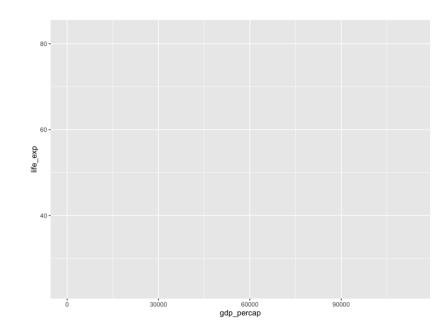
Data: gapminder dataset

country	continent	year	life_exp	рор	gdp_percap
Afghanistan	Asia	1952	28.801	8425333	779.4453
Afghanistan	Asia	1957	30.332	9240934	820.8530
Afghanistan	Asia	1962	31.997	10267083	853.1007
Afghanistan	Asia	1967	34.020	11537966	836.1971
Afghanistan	Asia	1972	36.088	13079460	739.9811
Afghanistan	Asia	1977	38.438	14880372	786.1134
Afghanistan	Asia	1982	39.854	12881816	978.0114
Afghanistan	Asia	1987	40.822	13867957	852.3959
Afghanistan	Asia	1992	41.674	16317921	649.3414
Afghanistan	Asia	1997	41.763	22227415	635.3414

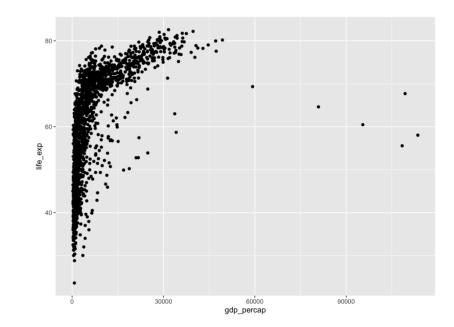

Analytic question:

What's the relationship between GDP and life expectancy?

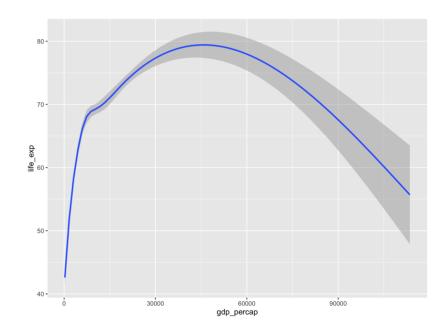

What plot could we make to explore that?

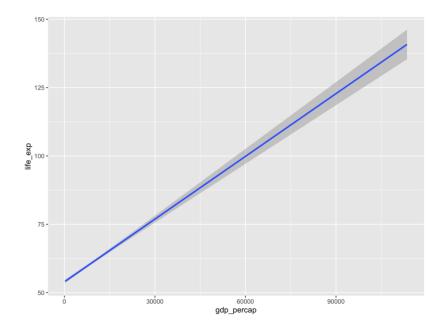

Let's start with an x-y scatter plot.

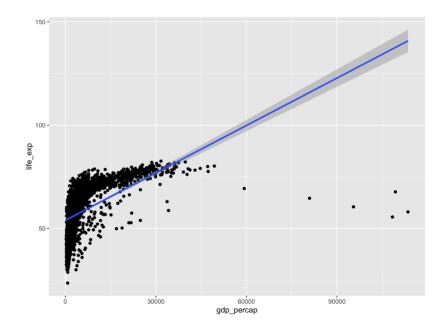
ggplot()



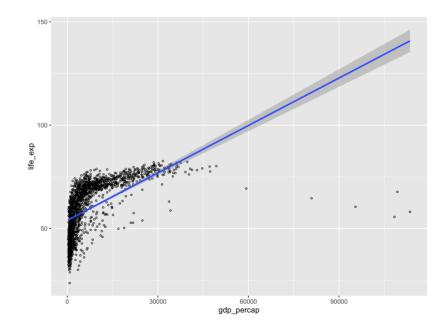
ggplot(data = gapminder)



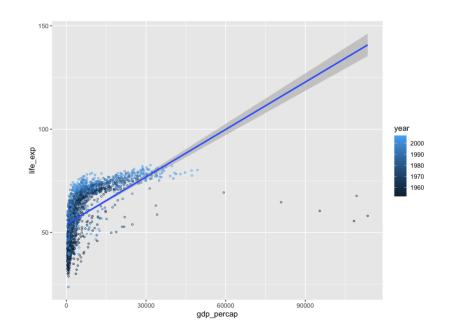

Let's add a geom (note the +).


Let's try a different geom: a smoothed line.

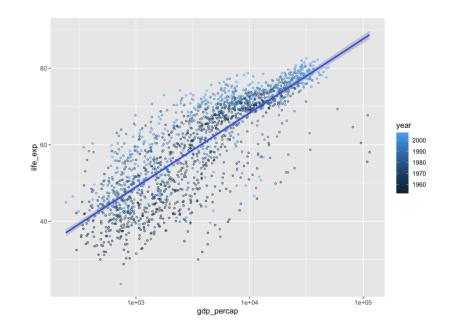
Maybe we want a linear line.



It might be nice to see the raw data WITH the line. We can combine geoms!


Those points are too big. Let's make them smaller. Let's also change the shape.

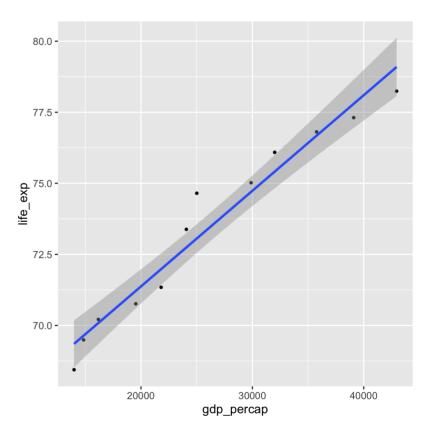
Why don't these changes go in aesthetics?



How could we add information about year?

Through the color aesthetic...

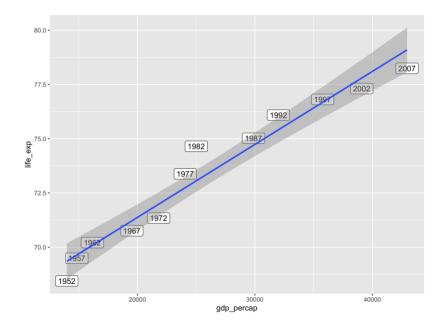
The data are all squished on the x axis. We can fix that by changing the scale on the x-axis to the be the log of x.

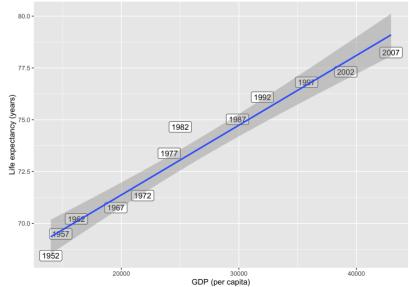

What if wanted to look at just data for the United States?

Filter!

```
us_gapminder <- gapminder %>%
filter(country == "United States")
```

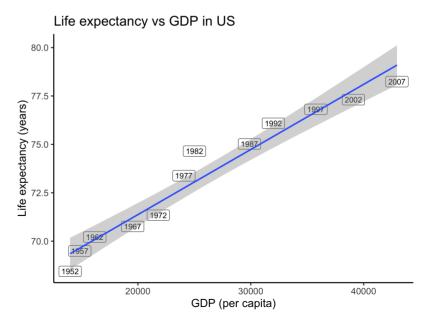
## # A tibble: 5 ×	6				
## country	continent	year	life_exp	рор	gdp_percap
## <fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>
## 1 United States	Americas	1952	68.4	157553000	13990.
## 2 United States	Americas	1957	69.5	171984000	14847.
## 3 United States	Americas	1962	70.2	186538000	16173.
## 4 United States	Americas	1967	70.8	198712000	19530.
## 5 United States	Americas	1972	71.3	209896000	21806.


```
ggplot(us_gapminder, mapping = aes(x = gdp_percap, y = life_exp)) +
geom_point(size = .8) +
geom_smooth(method = "lm")
```

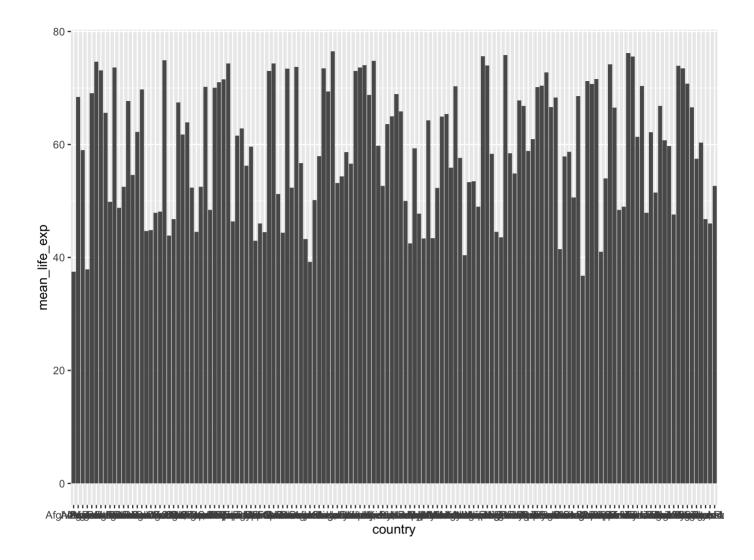


What if wanted to label the points with years?

geom_label()

ggplot(us_gapminder, mapping = aes(x = gdp_percap, y = life_exp, label = year geom_label() + geom_smooth(method = "lm")



Let's do a few things to make our plot more readable: Add clearer axis labels and a title.


Life expectancy vs GDP in US

We can also change the *theme*. I like theme_classic.

So far we've just been working with the raw data in tidy format. We can also *summarize* our data before we plot it.

What if we wanted to know which country had the highest life expectancy? The second highest?

Yowza! That's a disaster!

One way to make this plot more attractive is to reorder the bars.

To do that, we need to know about **factors** in R.

R uses factors to handle qualitative variables (variables that have a fixed and known set of possible values)

```
x <- c("Monday", "Tuesday", "Wednesday", "Monday")
x <- c("Monday" "Tuesday" "Wednesday" "Monday"
class(x)
## [1] "character"
y <- as.factor(x)
y</pre>
```

[1] Monday Tuesday Wednesday Monday
Levels: Monday Tuesday Wednesday

class(y)

[1] "factor"

Factors are like a character (level labels) and an integer (level numbers) glued together. They are ORDERED character levels.

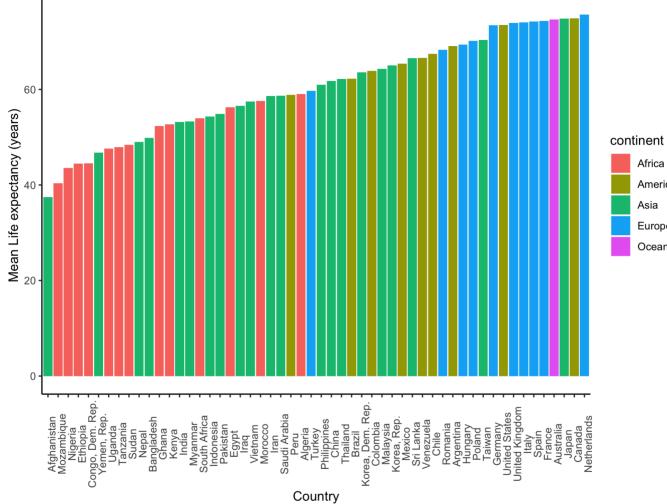
```
glimpse(y)
```

```
## Factor w/ 3 levels "Monday", "Tuesday",...: 1 2 3 1
```

When you print a dataframe it will tell you each variable type, including factors.

```
slice(gapminder, 1:4)
```

<pre>## country continent year life_exp pop gdp_per</pre>	
	rcap
## <fct> <fct> <int> <dbl> <int> <d< td=""><td>dbl></td></d<></int></dbl></int></fct></fct>	dbl>
## 1 Afghanistan Asia 1952 28.8 8425333 7	779.
## 2 Afghanistan Asia 1957 30.3 9240934 8	821.
## 3 Afghanistan Asia 1962 32.0 10267083 8	853.
## 4 Afghanistan Asia 1967 34.0 11537966 8	836.


The **forcats** package in the tidyverse is helpful for working with factors.

fct_reorder(): Reordering a factor by another variable.

fct_relevel(): Changing the order of factor levels by hand.

fct_recode(): Changing factor level names by hand

Here's a prettier version of the earlier plot:

