
# Reproducibility (and the failures)

27 September 2021 Modern Research Methods

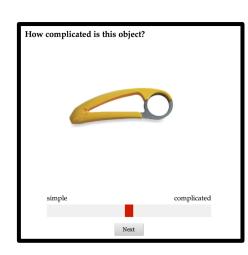
# Last couple weeks: Working with data in the tidyverse

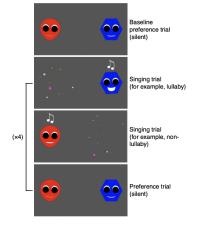


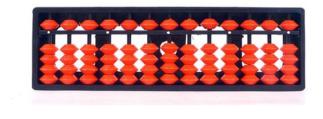
filter(), select(), arrange(), mutate(), group\_by(), summarize(), slice(), distinct() ggplot()



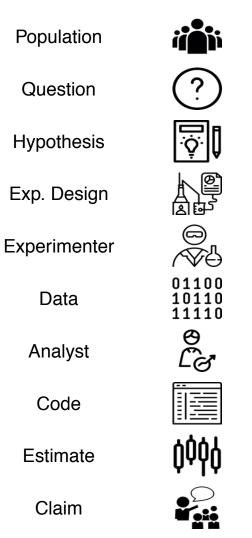
Artwork by @allison\_horst


Why are these tools useful for psychologists?


One reason: Reproducibility!


## The single experiment
















(Patil, Peng, & Leek, 2019)

Population

Question

Hypothesis

Exp. Design

Experimenter

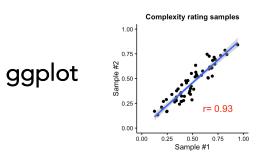
Data

Analyst

Code

Estimate

Claim




The tidyverse is a powerful and consistent ecosystem for analyzing, exploring, and presenting data.

Tidy data

You, an R coder

R markdown, using dplyr verbs



| V1 | V2 | V3 | V4       | V1 | V2 | V3 | V4 | V1 | V2 | V3 | V4 |
|----|----|----|----------|----|----|----|----|----|----|----|----|
|    |    |    |          | -  |    |    | -  | 0  | 0  | 0  | 0  |
|    |    |    |          | -  |    |    | -  | 0  | 0  | 0  | 0  |
| +  | +  | +  | <b>+</b> | •  |    |    | -  | 0  | 0  | 0  | 0  |

# These tools also help make the analyses of your experiment **reproducible**

Original

Different

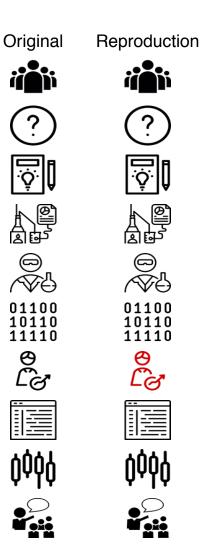
Population

Question

Hypothesis

Exp. Design

Experimenter


Data

Analyst

Code

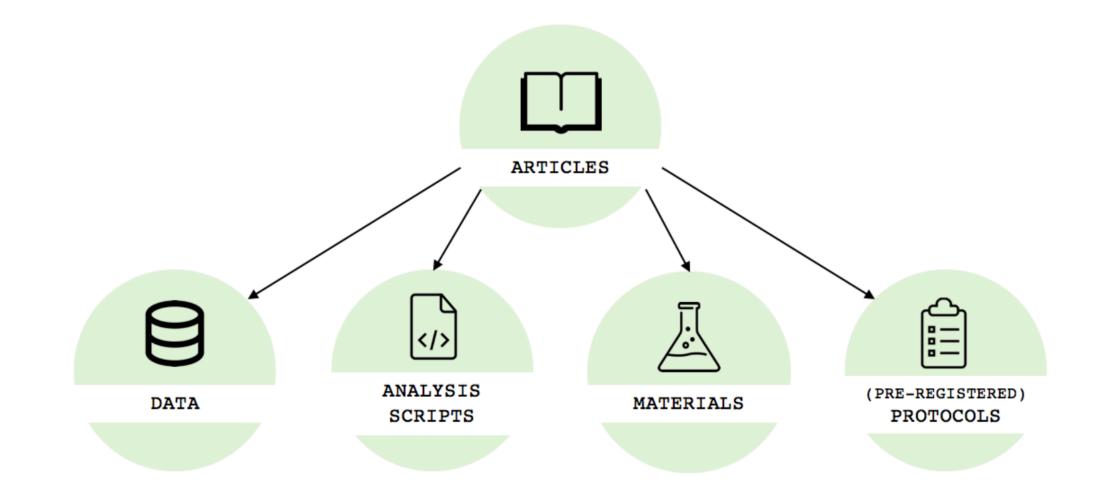
Estimate

Claim



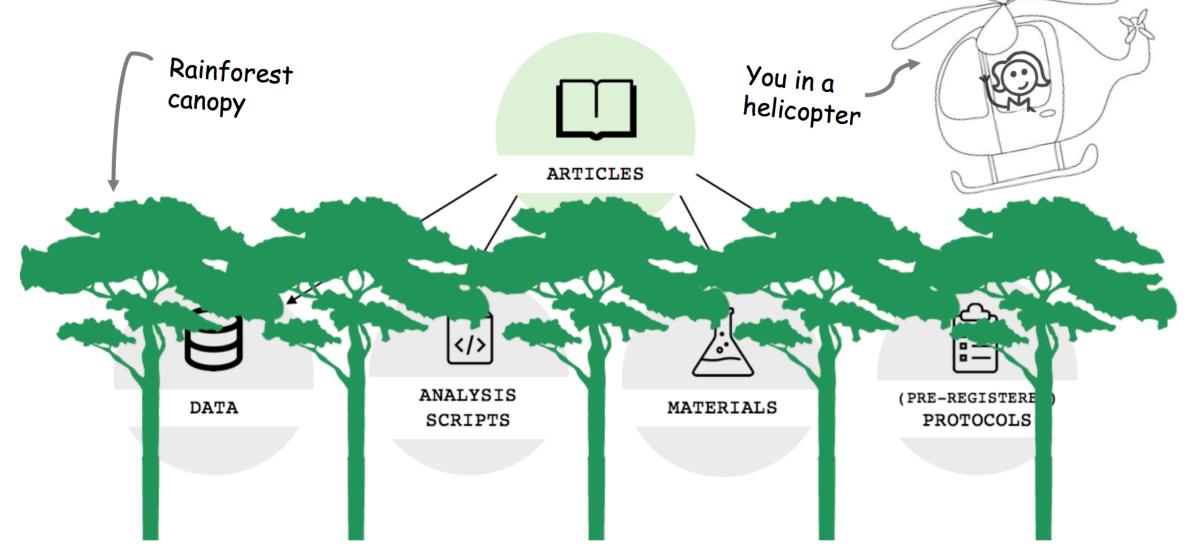
**REPRODUCE** = Get same result from same dataset.

REPRODUCE = "...a second researcher might use the same raw data [and] implement the same statistical analysis in an attempt to yield the same results.... Reproducibility is a minimum necessary condition for a finding to be believable and informative." – NSF Report.


(Patil, Peng, & Leek, 2019)

## Reproducibility

- You should be able to hand your data to <u>someone else</u> and they should be able to reproduce your analyses.
- <u>You</u> should be able to reproduce the same analysis you produced last week again.

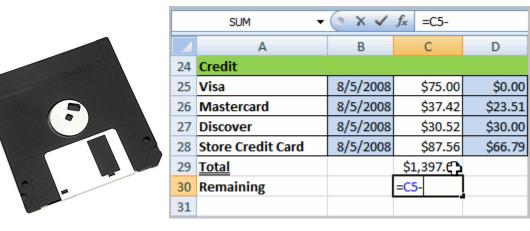



## The Modern Scholarly Record



Slide adopted from Tom Hardwicke by CC

## The Modern Scholarly Record




Slide adopted from Tom Hardwicke by CC

## What makes an analysis irreproducible?

Either by later-you or another analyst.

- Original data is lost/not accessible
- Outdated/unavailable software
- Point and click software hard to save steps
- Have data but don't know what variables correspond to
- Ambiguous verbal description of the analysis.





### **Results and Discussion**

There was not a significant effect of sampling on generalization  $(\chi^2(1) = 0.89, p = .34; d = 0.33 [-0.22, 0.88])$ . Proportions and effect sizes are shown in Figures 3 and 4, respectively.

# Why is reproducibility important?

- Understand exactly how someone analyzed their data
- Catch honest errors or differences in interpretation
- Catch fraud

### **TECHNICAL COMMENT**

EDUCATION

### **Comment on "Math at home adds up** to achievement in school"

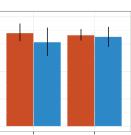
Michael C. Frank\*

Berkowitz et al. (Reports, 9 October 2015, p. 196) described a randomized field experiment testing whether a math app designed to increase parent-child interaction could also bring academic benefits. A reanalysis of the data suggests that this well-designed trial failed to find strong evidence for the efficacy of the intervention. In particular, there was no significant effect of the intervention on math performance.

0.00

an electronic apps increase parent-child interaction around academic subjects like math and in turn help improve children's school outcomes? Berkowitz et al. (1) reported a randomized field experiment testing this hypothesis. Children were randomly assigned to math and reading app groups, and their learning outcomes were reassessed at the end of the school year. The study had a strong design, including a large sample size, objective measures of app usage, standardized outcome measures, and a well-matched control group. Unfortunately, a reanalysis of Berkowitz et al.'s data-which they provided as part of their Report, in a commendable show of open practices-suggests that their results provide limited support for the effectiveness of the intervention.

imental group compared with the control group


Department of Psychology, Stanford University, Stanford, CA, USA.

\*Corresponding author. E-mail: mcfrank@stanford.edu

Frank (2016)

(Fig. 1). A longitudinal mixed-effects regression predicting math performance as a function of condition, time, and their interaction (including random intercepts for each student and classroom and random slopes for each classroom) (2) showed

0.25 First, the intervention resulted in no significant improvement in math performance for the exper-



WJ Applied Problems W.I.I. etter-Word (Reading) Measure

#### SCIENCE

### **A Famous Honesty Researcher** Is Retracting A Study Over **Fake Data**

Renowned psychologist Dan Ariely literally wrote the book on dishonesty. Now some are questioning whether the scientist himself is being dishonest.

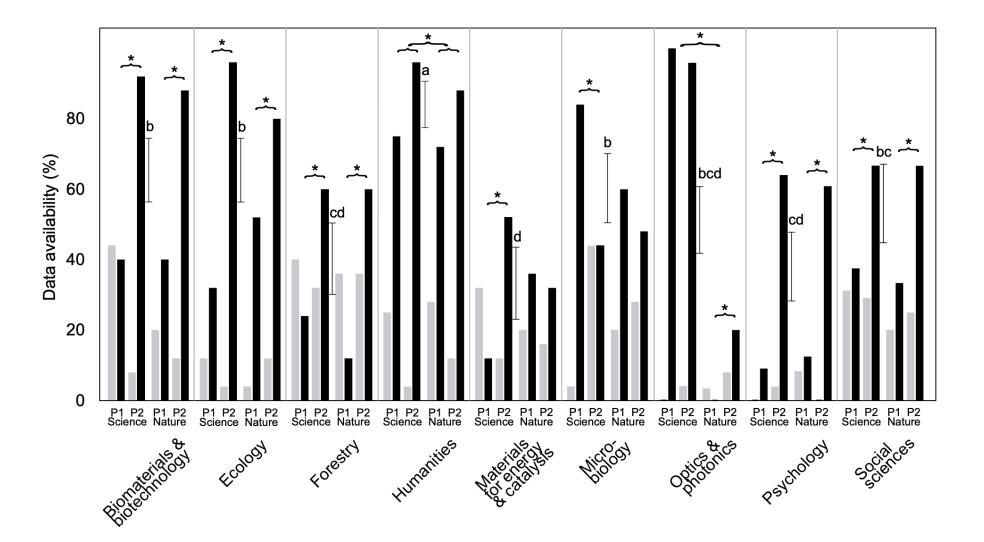


Last updated on August 25, 2021, at 1:15 p.m. ET Posted on August 20, 2021, at 2:40 p.m. ET

[Source]

## "Open Science"

# Movement to make experimental materials available to others


- Experimental data
- Experimental code
- Stimuli

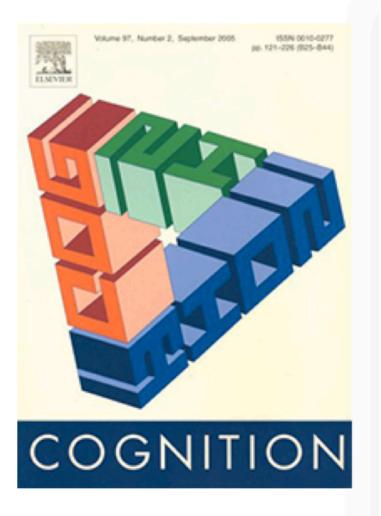


https://www.youtube.com/watch?v=1rFWeTryiW4&feature=youtu.be

# How reproducible is psychological research?

# Data availability for papers in *Science* and *Nature*, 2000-2019




(Tedersoo, et al. 2021)

# Data not typically available from published papers in psychology

| Study                           | Field                   | Papers checked | % data available* |
|---------------------------------|-------------------------|----------------|-------------------|
| Wicherts et al. (2006)          | Psychology              | 141            | 27%               |
| Vanpaemel et al.<br>(2015)      | Psychology              | 394            | 38%               |
| Vines et al. (2014)             | Ecology                 | 516            | 19%               |
| Hardwicke &<br>Ioannidis (2018) | Psychology & Psychiatry | <b>111</b>     | 14%               |

Slide adopted from Tom Hardwicke by CC

# Journals are creating policies that mandate data sharing



A mandatory open data policy was introduced at the journal Cognition on 1<sup>st</sup> March, 2015:

"All empirical papers must archive their data upon acceptance in order to be published unless the authors provide a compelling reason why they cannot."

"The data must be in a form that allows all reported statistical analyses to be reproduced while retaining the confidentiality of individual participants. This entails that the data are formatted and documented in a way that makes the structure of the data set readily apparent."

## Data availability statement

### Author note

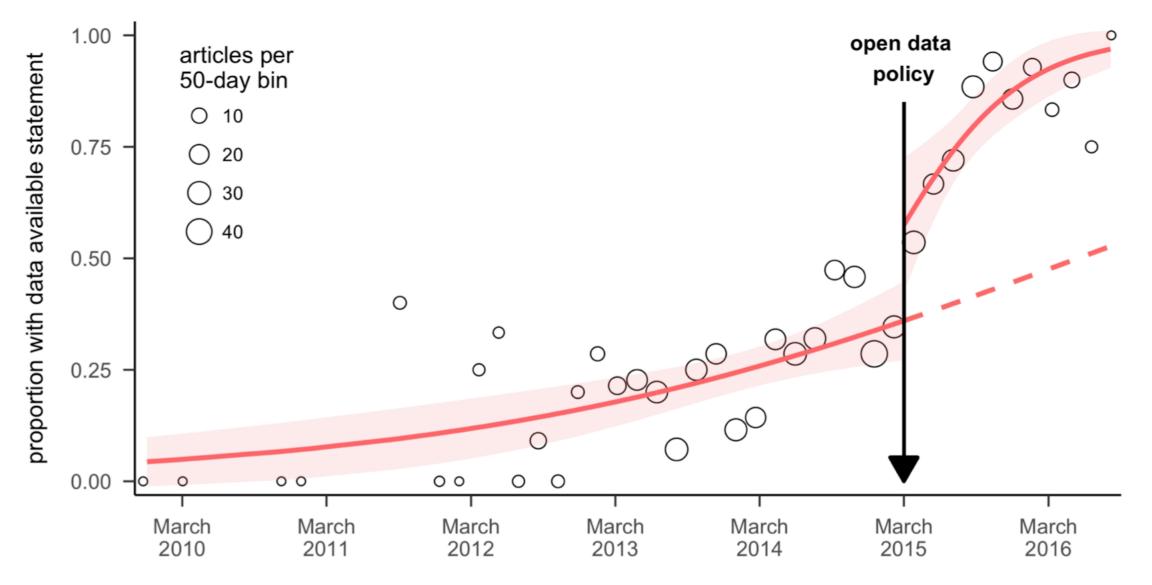
This work was supported by an Economic and Social Research Council grant (ES/K004948/1) and a European Research Council consolidator grant (817492-SAMPLING) to ANS and an Economic and Social Research Council grants (ES/K002201/1 and ES/N018192/1) and a Leverhulme Trust grant (RP2012-V-022) grant to NS. The authors thank Jerome Busemeyer and Richard Shiffrin for helpful discussions. The data as well as analysis code from all experiments is available on the Open Science Framework: http://doi.org/10.17605/OSF.IO/8QS6J.

# Do these open data policies help reproducibility?

### ROYAL SOCIETY OPEN SCIENCE

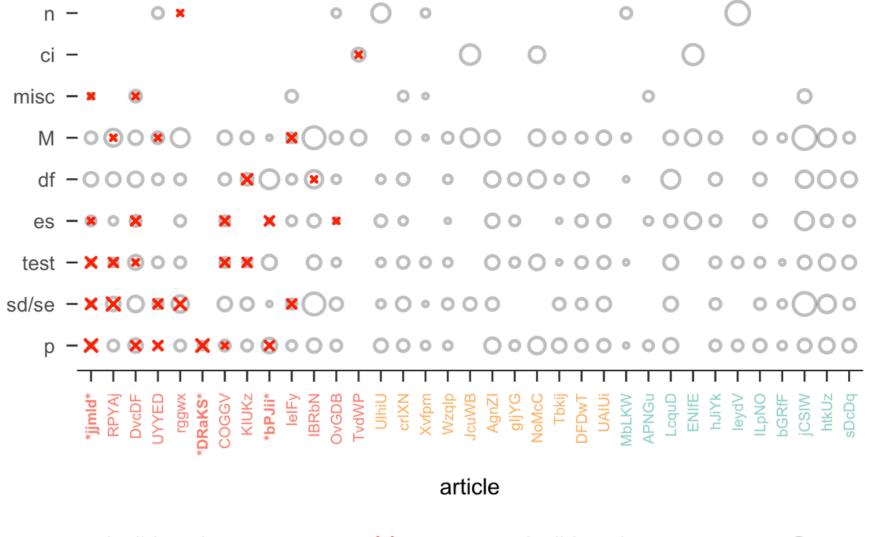
### rsos.royalsocietypublishing.org






**Cite this article:** Hardwicke TE *et al.* 2018 Data availability, reusability, and analytic reproducibility: evaluating the impact of a mandatory open data policy at the journal *Cognition. R. Soc. open sci.* **5**: 180448. http://dx.doi.org/10.1098/rsos.180448

Received: 19 March 2018 Accepted: 25 June 2018 Data availability, reusability, and analytic reproducibility: evaluating the impact of a mandatory open data policy at the journal *Cognition* 


Tom E. Hardwicke<sup>1</sup>, Maya B. Mathur<sup>2,4</sup>, Kyle MacDonald<sup>3</sup>, Gustav Nilsonne<sup>3,5,6</sup>, George C. Banks<sup>7</sup>, Mallory C. Kidwell<sup>8</sup>, Alicia Hofelich Mohr<sup>9</sup>, Elizabeth Clayton<sup>10</sup>, Erica J. Yoon<sup>3</sup>, Michael Henry Tessler<sup>3</sup>, Richie L. Lenne<sup>11</sup>, Sara Altman<sup>3</sup>, Bria Long<sup>3</sup> and Michael C. Frank<sup>3</sup>

Is data available?



submission date

## Are target values reproducible?



non-reproducible values  $\times$  1  $\times$  5  $\times$  10 reproducible values  $\circ$  1  $\odot$  5  $\bigcirc$  10

# Assessment of reproducibility in psychology from Hardwicke et al. (2018)

- Cognition's open data policy was highly effective at increasing data availability, but fell short of ideal
- Open data alone is clearly not enough to achieve the benefits envisioned by proponents of data sharing
- Scientists are only human and inherit all the fallibilities that come with that -- not surprising that analysis pipelines are peppered with errors!
- Adopt strategies to reduce chance of errors that inevitably arise in computational work.

## **Reproducibility Solutions**





### Data documentation

Create a 'codebook' which describes the structure and content of your data files. Consider organizing the data in 'Tidy' format.





## Literate programming

Use R Markdown to combine your analysis code with regular prose. Using comments to explain your analysis helps others (and your future self) to understand what you did.



## **Co-piloting**

Team up with the person sat next to you. Checking each other's work may help to reduce the chance of human error.

### Dynamic report generation

Use knitR to generate research reports directly from core research artifact (data, analysis scripts). A reader can now trace the provenance of reporter values to their source. Voilà! Reproducibility.

## Version control

Use Github to keep track of changes to your project. This facilitates collaboration and helps with error detection.

## Next Time: Reproducible Workflows

## Data organization Version Control

# GitHub



#### Excuse Me, Do You Have a Moment to Talk About Version Control?

Jennifer Bryan

RStudio and the Department of Statistics, University of British Columbia, Vancouver, Canada

#### ABSTRACT

Data analysis, statistical research, and teaching statistics have at least one thing in common: these activities all produce many files! There are data files, source code, figures, tables, prepared reports, and much more. Most of these files evolve over the course of a project and often need to be shared with others, for reading or edits, as a project unfolds. Without explicit and structured management, project organization can easily descend into chaos, taking time away from the primary work and reducing the quality of the final product. This unhappy result can be avoided by repurposing tools and workflows from the software development world, namely, distributed version control. This article describes the use of the version control system Git and the hosting site GitHub for statistical and data scientific workflows. Special attention is given to projects that use the statistical language R and, optionally, R Markdown documents. Supplementary materials include an annotated set of links to step-by-step tutorials, real world examples, and other useful learning resources. Supplementary materials for this article are available online.

#### **ARTICLE HISTORY**

Received July 2017 Revised October 2017

#### KEYWORDS

Data science; Git; GitHub; R language, R Markdown; Reproducibility; Workflow

#### 1. Why Git?

Why would a statistician use a version control system, such as *https://git-scm.com* Git (*Git* n.d.)? And what is the point of hosting your work online, for example, on *https://github.com* GitHub (*GitHub* n.d.)? Could the gains possibly justify the inevitable pain?

I say yes, with the zeal of the converted.

There are many benefits of using hosted version control in your statistical practice:

- Doing your work becomes tightly integrated with organizing, recording, and disseminating it. It is not a separate, burdensome task you are tempted to neglect.
- Collaboration is much more structured, with powerful tools for asynchronous work and managing versions.
- The marginal effort required to create a web presence for a project is negligible.

out tools that soften Git's sharpest edges, I recommend specific habits and attitudes that reduce frustration.

#### 2. What is Git?

Git is a *version control system*. Its original purpose was to help groups of developers work collaboratively on big software projects. Git manages the evolution of a set of files—called a *repository* or *repo*—in a sane, highly structured way. It is like the "Track Changes" feature from Microsoft Word, but more rigorous, powerful, and scaled up to multiple files.

Git has been repurposed by the data science community (Ram 2013; Bartlett 2016; Perez-Riverol et al. 2016). We use it to manage the motley collection of files that make up typical data analytical projects, which consist of data, figures, reports, and source code. Even those who identify more as statisticians than data scientists generally have a similar mix of files that are the

## Acknowledgements

Slides 10-11; 16-17; 19-23 adopted from Tom Hardwicke by CC