Statistical Foundations: Sampling

4 October 2021
Modern Research Methods

Overview of course

1) Philosophy of Cumulative Science
2) The Single Experiment - Experimental data, tools in R for working with data and plotting data, reproducibility
3) Repeating an Experiment - Intro to statistical inference, replication of experiments
4) Aggregating Many Experiments - Meta-analysis

Finding categories through words: More nameable features improve category learning

Martin Zettersten*, Gary Lupyan
Psychology Department, University of Wisconsin-Madison, 1202 W Johnson Street, Madison, WI 53706, USA

High Nameability Condition

Category A
 Category B

Low Nameability Condition

Category A

Category B
\square
।

Replicating Zettersten and Lupyan (2020)

Original

predicting participants' trial-by-trial accuracy on training trials from condition, including a by-subject random intercept. ${ }^{3}$ We used the lme 4 package version 1.1-21 in R (version 3.6.1) to fit all models (D. Bates \& Maechler, 2009; R Development Core Team, 2019). Participants in the High Nameability condition ($M=84.0 \%$, $95 \% \mathrm{CI}=[78.6 \%, 89.4 \%]$) were more accurate than participants in the Low Nameability Condition $(M=67.7 \%, \quad 95 \% \quad C I=[59.9 \%, \quad 75.4 \%]), \quad b=1.02, \quad 95 \%$ Wald

Replication

[You]

High Nameability Condition $=75 \%$
Low Nameability Condition = 69\%

Should you expect to replicate the original finding? Did you replicate it? What would convince you?

?=
High Nameability Condition $=75 \%$
Low Nameability Condition $=69 \%$

In order to evaluate this replication, we need think about statistical inference.

In the next few classes, we're going to discuss statistical inference in order to reason about the replicability of psychological effects.

Frameworks of statistical inference

- Does 75 differ from 69?
- Null hypothesis testing
- Do a hypothesis test, get a p-value
- If p-value is less that . 05 -> difference is "significant"
- Estimation
- The difference between 75 and 69 is $7+/-3$
- Estimation is a much more productive framework
- Contains more information (not black or white)
- NHST certainty is an illusion - satisfies human "preference for black or white over nuance" (Cumming, 2015)

Is the temperature less than 60 degrees at your vacation destination?

- Null hypothesis testing -> yes
- Estimation -> 13 +/ 3 degrees

Distributions

Distributions = counts of a variable Plot with histograms

Two measures:

- Mean measures center ("central tendency")
- Variance measures dispersion.
(There are other measures of the center and dispersion of a distribution, but these are the
 measures we're going to focus on here)

What is the mean of these distributions? Which ones have low vs. high variance?

Calculating mean and variance

i [which game]	X_{i} [value]	$X_{i}-\bar{X}$ [deviation from mean]	$\left(X_{i}-\bar{X}\right)^{2}$ [absolute deviation]
1	56	19.4	376.36
2	31	-5.6	31.36
3	56	19.4	376.36
4	8	-28.6	817.96
5	32	-4.6	21.16

$$
\bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

$$
\operatorname{Var}(X)=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}
$$

$$
s=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}}
$$

Mean

Variance is the average squared deviation from the mean of a dataset.

Standard deviation is the square root of variance.

Our goal as scientists

- As scientists, we want to estimate parameters about the world.
- One of the most common parameters is the mean.
- For example: What is the mean accuracy in the high nameability condition? What is the mean accuracy in the low nameability condition? (Zettersten \& Lupyan, 2020)
- As psychologists we're interested in the population of ALL PEOPLE if they had done our experiment.
- But, to save time and effort, we only measure a sample.

Population vs. sample

- A sample is a random subset of the population.
- That means there are really two distributions.
- Population: The distribution of all people (7.53 billion), or maybe all people who speak English (1.5 billion), or maybe all people at UWMadison (44k)
- Sample: Zettersten and Lupyan only tested 50 participants.
- We don't know what the population looks like (and we usually don't).

Challenge: Make (good) inferences about the population from the sample.

Population

 $N=\mathrm{a}$ lotSample

Sample

$N=50$

Use mean of sample to estimate mean of population.

Population

Sample

Sampling distribution of the mean

Zorbia Population IQ

In class simulation

What can we learn from a sample of this population?

In groups of ~ 5 :

1. Cut the people of Zorbia out.
2. Put them in the envelope.
3. Each person in the group should take a sample of three.
4. Calculate the average.
5. Write it on a stick note, and add it to the class plot
6. Do steps 3-5 once more.

In class simulation

What can we learn from a sample of this population?

In groups of ~ 5 :

1. Cut the people of Zorbia out.
2. Put them in the envelope.
3. Each person in the group should take a sample of ten.
4. Calculate the average.
5. Write it on a stick note, and add it to the class plot
6. Do steps 3-5 once more.

Key points from Zorbia simulation

- Two samples from the same population will tend to have somewhat different means
- Conversely, two different sample means does NOT mean that they come from different populations
- The variance of the sampling distribution of means gets smaller as the sample size increases
- Mores samples give better estimate of population mean

Next Time: Confidence Intervals

- Guest lecture from Roderick
- Reading:

Inference by Eye

Confidence Intervals and How to Read Pictures of Data

Geoff Cumming and Sue Finch
La Trobe University

Acknowledgements

- Slide 12 adapted from Danielle Navarro, Learning Statistics with R (https://learningstatisticswithr.com/)

