Statistical Foundations: Sampling

4 October 2021 Modern Research Methods

Overview of course

- 1) Philosophy of Cumulative Science
- 2) The Single Experiment Experimental data, tools in R for working with data and plotting data, reproducibility
- 3) Repeating an Experiment Intro to statistical inference, replication of experiments
- 4) Aggregating Many Experiments Meta-analysis

REPRODUCE = Get same result from same dataset.

REPLICATE = Get same result with a new dataset

* Sometimes people are sloppy with these terms and use them interchangeably.

(Patil, Peng, & Leek, 2019)

Contents lists available at ScienceDirect

Cognition

Check for updates

journal homepage: www.elsevier.com/locate/cognit

Finding categories through words: More nameable features improve category learning

Martin Zettersten*, Gary Lupyan

Psychology Department, University of Wisconsin-Madison, 1202 W Johnson Street, Madison, WI 53706, USA

Replicating Zettersten and Lupyan (2020)

<u>Original</u>

predicting participants' trial-by-trial accuracy on training trials from condition, including a by-subject random intercept.³ We used the lme4 package version 1.1-21 in R (version 3.6.1) to fit all models (D. Bates & Maechler, 2009; R Development Core Team, 2019). Participants in the High Nameability condition (M = 84.0%, 95% CI = [78.6%, 89.4%]) were more accurate than participants in the Low Nameability Condition (M = 67.7%, 95% CI = [59.9%, 75.4%]), b = 1.02, 95% Wald

Replication

[You]

High Nameability Condition = 75% Low Nameability Condition = 69%

Should you expect to replicate the original finding? Did you replicate it? What would convince you?

predicting participants' trial-by-trial accuracy on training trials from condition, including a by-subject random intercept.³ We used the lme4 package version 1.1-21 in R (version 3.6.1) to fit all models (D. Bates & Maechler, 2009; R Development Core Team, 2019). Participants in the High Nameability condition (M = 84.0%, 95% CI = [78.6%, 89.4%]) were more accurate than participants in the Low Nameability Condition (M = 67.7%, 95% CI = [59.9%, 75.4%]), b = 1.02, 95% Wald

?=

High Nameability Condition = 75% Low Nameability Condition = 69%

In order to evaluate this replication, we need think about *statistical inference*.

In the next few classes, we're going to discuss statistical inference in order to reason about the replicability of psychological effects.

Frameworks of statistical inference

- Does 75 differ from 69?
- Null hypothesis testing
 - Do a hypothesis test, get a p-value
 - If p-value is less that .05 -> difference is "significant"
- Estimation
 - The difference between 75 and 69 is 7 +/- 3
- Estimation is a much more productive framework
 - Contains more information (not black or white)
 - NHST certainty is an illusion satisfies human "preference for black or white over nuance" (Cumming, 2015)

Is the temperature less than 60 degrees at your vacation destination?

- Null hypothesis testing -> yes
- Estimation -> 13 +/ 3 degrees

Distributions

Distributions = counts of a variable Plot with histograms

Two measures:

- Mean measures center ("central tendency")
- Variance measures dispersion.

(There are other measures of the center and dispersion of a distribution, but these are the measures we're going to focus on here)

What is the mean of these distributions? Which ones have low vs. high variance?

Calculating mean and variance

i [which game]	X_i [value]	$X_i - ar{X}$ [deviation from mean]	$(X_i-ar{X})^2$ [absolute deviation]
1	56	19.4	376.36
2	31	-5.6	31.36
3	56	19.4	376.36
4	8	-28.6	817.96
5	32	-4.6	21.16

Winning Margin

Mean

$$\mathrm{Var}(X) = rac{1}{N}\sum_{i=1}^N ig(X_i - ar{X}ig)^2$$

Variance is the average squared deviation from the mean of a dataset.

$$s = \sqrt{rac{1}{N}\sum\limits_{i=1}^{N} ig(X_i - ar{X}ig)^2}$$

Standard deviation is the square root of variance.

(Thanks to Danielle Navarro, LSR <u>https://learningstatisticswithr.com/</u>)

Our goal as scientists

- As scientists, we want to estimate parameters about the world.
- One of the most common parameters is the mean.
- For example: What is the mean accuracy in the high nameability condition? What is the mean accuracy in the low nameability condition? (Zettersten & Lupyan, 2020)
- As psychologists we're interested in the population of ALL PEOPLE if they had done our experiment.
- But, to save time and effort, we only measure a **sample**.

Population vs. sample

- A sample is a random subset of the population.
- That means there are really two distributions.
- **Population**: The distribution of all people (7.53 billion), or maybe all people who speak English (1.5 billion), or maybe all people at UW-Madison (44k)
- Sample: Zettersten and Lupyan only tested 50 participants.
- We don't know what the population looks like (and we usually don't).

Challenge: Make (good) inferences about the population from the sample.

Sampling distribution of the mean

Zorbia Population IQ

Count

N = 97

Mean = 29

In class simulation

What can we learn from a sample of this population?

In groups of ~5:

- 1. Cut the people of Zorbia out.
- 2. Put them in the envelope.
- 3. Each person in the group should take a sample of three.
- 4. Calculate the average.
- 5. Write it on a stick note, and add it to the class plot
- 6. Do steps 3-5 once more.

In class simulation

What can we learn from a sample of this population?

In groups of ~5:

- 1. Cut the people of Zorbia out.
- 2. Put them in the envelope.
- 3. Each person in the group should take a sample of ten.
- 4. Calculate the average.
- 5. Write it on a stick note, and add it to the class plot
- 6. Do steps 3-5 once more.

Key points from Zorbia simulation

- Two samples from the same population will tend to have somewhat different means
 - Conversely, two different sample means does NOT mean that they come from different populations
- The variance of the sampling distribution of means gets smaller as the sample size increases
 - Mores samples give better estimate of population mean

Next Time: Confidence Intervals

- Guest lecture from Roderick
- Reading:

Inference by Eye

Confidence Intervals and How to Read Pictures of Data

Geoff Cumming and Sue Finch La Trobe University

Acknowledgements

• Slide 12 adapted from Danielle Navarro, <u>Learning Statistics</u> with R (<u>https://learningstatisticswithr.com/</u>)