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Population
N = a lot

1. Collect a sample
of size n from the
population

Sample

N =50 2

Sample
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2. What is the mean
of the population?



Estimating the mean Zobria 1Q

* Repeatedly sampled from the same
population

* Means of samples make up the sampling
distribution

* But usually, we only take one sample

* For a single sample, best point estimate of
population mean is the sample mean
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Why care about the certainty of estimates?

* Deciding between two flights:
* Flight A: Departs at 8pm, punctual

* Flight B: Departs at 7pm, has been
known to be delayed for up to 3 hours

* Decision making relies on both the
value and certainty of the estimate

* Additional description of data



* How to quantify certainty/uncertainty about estimate?
(Confidence intervals!)

* What do confidence intervals depend on?

* How to interpret confidence intervals?

* How to plot confidence intervals in R using ggplot?



Sampling Distribution

* Theoretical distribution of sample
means

e Central Limit Theorem

* Approaches normal distribution with
increasing sample sizes




* Depends on the
population
distribution
* Highly skewed
population
distributions lead

to skewed sampling
distributions

* Depends on sample
Size
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* How certain are we that our

estimate represents the mean of

the population?

e SEM = standard deviation of the
sampling distribution

Sample size, N = 10 standard error = 0.37
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Standard error of the mean

e Estimate of population’s standard deviation (o)
divided by square root of sample size (n)

o
SEM = —

3

e What does a smaller SEM tell us about our estimate?

* Smaller SEM = estimate is likely to be closer to
population mean




* Mean and SEM as point estimates

* What if we could create an interval that we are “reasonably
confident” contains the true population mean?

* Average score from sample: 7/10

 What is a range of scores that definitely includes the population
average?



* A range of values that captures the population mean with x%
confidence, typically set at 95%

* Imagine if we could take multiple samples from the population
* For each sample, we can construct a 95% confidence interval

* Then, 95% of the constructed intervals will include the true
population mean



* https://bit.ly/309gHoF

e Start with a normal distribution to sample from

1. How do the lengths of the confidence intervals change with sample
size?
With confidence level?

Try again with the exponential distribution
e Do your observations hold?



* Length of confidence interval
decreases with increasing
sample size

* Sample means are closer to
population mean
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* Length of Cl increases with
increasing confidence level

e Larger intervals capture more
possible parameter values
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* Principles apply to all types of
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(t h a n kS tO C LT) Source: Danielle Navarro; Estimating a Confidence Interval. (2020,

August 11).; Retrieved October 7, 2021, from
https://stats.libretexts.org/@go/page/4004



* Let’s assume that the sampling distribution is normal
* |s this always a valid assumption? When is this assumption inappropriate?
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* Let’s assume that the sampling distribution is normal
* |s this always a valid assumption? When is this assumption inappropriate?
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Blue shading =
Shaded Area = 95.4% proba bility that
value falls in
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* What if sampling distribution cannot be assumed to be normal?
* Small sample size and unknown population variance



* What if sampling distribution cannot be assumed to be normal?
* Small sample size and unknown population variance

e Use the student’s t-distribution instead!
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freedom)



Computing the CI

e What if we want a Cl for the difference of means?

e Same procedure! But need to compute variance of the difference sampling
distribution

2 independent samples

_ ol of
CL, = (X,—X,) + (6] |[=+=
x = (X1=X2) £ (ty* 1 nz)

Two-sided t-critical value
(with the smaller of n;-1 and n,-1
as the degrees of freedom)




* “Our Cl is a range of plausible values for the population mean. Values
outside the Cl are relatively implausible.” (cumming & Finch, 2005)

* |s about how much precision our sampling process affords us

* Not about our beliefs about the population
* Check out credible intervals in Bayesian statistics



Participants in the High Nameability condition (M=84.0%, 95%
CI=[78.6%, 89.4%]|) were more accurate than participants in the Low
Nameability Condition (M=67.7%, 95% CI=[59.9%, 75.4%|), b=1.02,
95% Wald CI=[0.47, 1.56], z=3.65, p<.001 (see Fig. 4A).

1.0
0o * Less overlap = Smaller p-value
€ 038 ° * Presents a more graded picture than
o
£ 0.7- . P<0.05 or p>0.05
06- * Not just whether means are
| statistically different
0o ., - e “Consider interpretations of lower and
high low

upper limits and compare these with

interpretations of the mean” (cumming &
Finch, 2005)
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Plotting confidence 1ntervals with ggplot



We're going to calculate a confidence intervals for the means on
accuracy reported in Zettersten and Lupyan (2020), Experiment 1A

Let's start by loading the data.

DATA_PATH <- "https://osf.io/a4dzb/download"

z1l_data <- read_csv(DATA_PATH)

zl _clean <- zl_data %>%
clean_names() %>%

select(experiment, subject, age, condition, block_num, is_right)

zl_expla <- zl_clean %>%

filter(experiment ==

"1A")

experiment subject age condition block_num is_right

1A
1A
1A
1A
1A

p150212
p150212
p150212
p150212
p150212

29 low
29 low
29 low
29 low
29 low

T = T = T

1

o =
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We start by getting by-subject by-condition means

ms_by_overall<- zl_expla %>%

group_by(subject, condition) %>%

summarize(prop_right = sum(is_right)/n())

## ‘summarise()' has grouped output by 'subject'. You can override using the

subject condition prop_right

p150212
p157080
P191463
p20905

p213384
p25634

p269913
p270949
p299672

low
low
low
high
high
low
low
low

high

0.8750000
0.7083333
0.9583333
0.9583333
1.0000000
0.6666667
0.4583333
0.9166667
0.8333333

‘.groups’ arg
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Next, let's calculate a point estimate for the mean in each condition.

means_by_condition <- ms_by_overall %>%
group_by(condition) %>%
summarize(mean = mean(prop_right))

condition mean
high 0.8400000
low 0.6766667
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Plot the point estimates with geom_point.

ggplot(means_by_condition, aes(x = condition, y = mean)) +
geom_point(size = 2) +
ylim(.5, 1) +
theme_classic()

1.0 -

high low
condition
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Next let's calculate a confidence interval around our estimate.

To start we need the sample size in each condition.

sample_size <- ms_by_overall %>%
group_by(condition) %>%
summarize(n = n())

condition n
high 25
low 25
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Now, let's calculate the the CI

means_by_condition_with_ci <- ms_by_overall %>%
group_by(condition) %>%
summarize(mean = mean(prop_right),
sd = sd(prop_right),
n=n()) %%
mutate(ci_range_95 = 1.96 * (sd/sqrt(n)),
ci_lower = mean - ci_range_95,
ci_upper = mean + ci_range_95)

condition mean sd n ci_range_95 ci_lower ci_upper
high 0.8400000 0.1304817 25 0.0511488 0.7888512 0.8911488
low 0.6766667 0.1876080 25 0.0735423 0.6031243 0.7502090
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Plotting the confidence intervals

ggplot(means_by_condition_with_ci, aes(x = condition, y = mean)) +
geom_point(size = 2) +
geom_linerange(aes(ymin = ci_lower, ymax = ci_upper)) +
ylim(.5, 1) +
theme_classic()
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There's actually a single geom that plots both points and ranges:
geom_pointrange.

ggplot(means_by_condition_with_ci, aes(x = condition, y = mean)) +
geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) +
ylim(.5, 1) +
theme_classic()
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There's one small complexity that I've glossed over.

Because we don't actually know the SD for the population
distribution we have to estimate from a distribution called the t-
distribution.

means_by_condition_with_ci_t <- ms_by_overall %>%
group_by(condition) %>%
summarize(mean = mean(prop_right),
sd = sd(prop_right),
n=n()) %%
mutate(ci_range_95 = qt(1 - (0.05 / 2), n - 1) * (sd/sqrt(n)),
ci_lower = mean - ci_range_95,

ci_upper = mean + ci_range_95)
condition mean sd n ci_range_95 ci_lower ci_upper
high 0.8400000 0.1304817 25  0.0538602 0.7861398 0.8938602
low 0.6766667 0.1876080 25  0.0774408 0.5992259 0.7541074
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Point estimates with ranges calculated from the t-distribution.

ggplot(means_by_condition_with_ci_t, aes(x = condition, y = mean)) +
geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) +
ylim(.5, 1) +
theme_classic()
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* Confidence intervals quantify uncertainty about our estimates of the
population mean based on a sample

e Captures precision of the sampling process, not about our beliefs about the
value of the true population parameter

* Encourages thinking about plausible range of values instead of a point
estimate

* Larger samples, populations with smaller variances, and lower
confidence levels lead to smaller intervals



