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Estimating the mean Zobria IQ
• Repeatedly	sampled	from	the	same	
population
• Means	of	samples	make	up	the	sampling	
distribution

• But	usually,	we	only	take	one	sample
• For	a	single	sample,	best	point	estimate	of	
population	mean	is	the	sample	mean





Why care about the certainty of estimates?
• Deciding	between	two	flights:

• Flight	A:	Departs	at	8pm,	punctual

• Flight	B:	Departs	at	7pm,	has	been	
known	to	be	delayed	for	up	to	3	hours

• Decision	making	relies	on	both	the	
value	and	certainty	of	the	estimate

• Additional	description	of	data



Learning Objectives
• How	to	quantify	certainty/uncertainty	about	estimate?	
(Confidence	intervals!)

• What	do	confidence	intervals	depend	on?

• How	to	interpret	confidence	intervals?

• How	to	plot	confidence	intervals	in	R	using	ggplot?



Sampling Distribution
• Theoretical	distribution	of	sample	
means
• Central	Limit	Theorem
• Approaches	normal	distribution	with	
increasing	sample	sizes



Sampling Distribution: Variance
• Depends	on	the	
population	
distribution
• Highly	skewed	
population	
distributions	lead	
to	skewed	sampling	
distributions

• Depends	on	sample	
size



Standard error of the mean (SEM)
• How	certain	are	we	that	our	
estimate	represents	the	mean	of	
the	population?
• SEM	=	standard	deviation	of	the	
sampling	distribution



Standard error of the mean
• Estimate	of	population’s	standard	deviation	(!)	
divided	by	square	root	of	sample	size	(n)

• What	does	a	smaller	SEM	tell	us	about	our	estimate?

• Smaller	SEM	=	estimate	is	likely	to	be	closer	to	
population	mean
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From a point estimate to an interval
• Mean	and	SEM	as	point	estimates
• What	if	we	could	create	an	interval	that	we	are	“reasonably	
confident”	contains	the	true	population	mean?

• Average	score	from	sample:	7/10
• What	is	a	range	of	scores	that	definitely	includes	the	population	
average?	



Confidence Intervals
• A	range	of	values	that	captures	the	population	mean	with	x%	
confidence,	typically	set	at	95%

• Imagine	if	we	could	take	multiple	samples	from	the	population
• For	each	sample,	we	can	construct	a	95%	confidence	interval
• Then,	95%	of	the	constructed	intervals	will	include	the	true	
population	mean



Confidence Intervals - Activity
• https://bit.ly/3o9qHoF

• Start	with	a	normal	distribution	to	sample	from

1. How	do	the	lengths	of	the	confidence	intervals	change	with	sample	
size?	

2. With	confidence	level?
3. Try	again	with	the	exponential	distribution
• Do	your	observations	hold?



Confidence Intervals - Activity
• Length	of	confidence	interval	
decreases	with	increasing	
sample	size
• Sample	means	are	closer	to	
population	mean

• Length	of	CI	increases	with	
increasing	confidence	level
• Larger	intervals	capture	more	
possible	parameter	values

• Principles	apply	to	all	types	of	
population	distributions	
(thanks	to	CLT) Source:	Danielle	Navarro;	Estimating	a	Confidence	Interval.	(2020,	

August	11).;	Retrieved	October	7,	2021,	from	
https://stats.libretexts.org/@go/page/4004



Computing the CI
• Let’s	assume	that	the	sampling	distribution	is	normal
• Is	this	always	a	valid	assumption?	When	is	this	assumption	inappropriate?

()* = +, ± (/* ∗
!
&� )

Two-sided	z-critical	value	

SEM



Computing the CI
• Let’s	assume	that	the	sampling	distribution	is	normal
• Is	this	always	a	valid	assumption?	When	is	this	assumption	inappropriate?

()23 = +, ± (1.96 ∗ !
&� )

Blue shading = 
probability that 
value falls in 
between a 
range.

x-value = 
1.96

x-value = 
-1.96



Computing the CI
• What	if	sampling	distribution	cannot	be	assumed	to	be	normal?
• Small	sample	size	and	unknown	population	variance



Computing the CI
• What	if	sampling	distribution	cannot	be	assumed	to	be	normal?
• Small	sample	size	and	unknown	population	variance

• Use	the	student’s	t-distribution	instead!

()* = +, ± (8* ∗
!
&� )

Two-sided	t-critical	value	
(with	n-1	degrees	of	

freedom)	



Computing the CI
• What	if	we	want	a	CI	for	the	difference	of	means?
• Same	procedure!	But	need	to	compute	variance	of	the	difference	sampling	
distribution
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Two-sided	t-critical	value	
(with	the	smaller	of	n1-1	and	n2-1	

as	the	degrees	of	freedom)	

2	independent	samples



What exactly does the CI mean?
• “Our	CI	is	a	range	of	plausible	values	for	the	population	mean.	Values	
outside	the	CI	are	relatively	implausible.”	(Cumming	&	Finch,	2005)

• Is	about	how	much	precision	our	sampling	process	affords	us
• Not	about	our	beliefs	about	the	population
• Check	out	credible	intervals	in	Bayesian	statistics



• Less	overlap	=	Smaller	p-value
• Presents	a	more	graded	picture	than	
p<0.05	or	p>0.05	
• Not	just	whether	means	are	
statistically	different

• “Consider	interpretations	of	lower	and	
upper	limits	and	compare	these	with	
interpretations	of	the	mean”	(Cumming	&	
Finch,	2005)



Plotting confidence intervals with ggplot



We're going to calculate a confidence intervals for the means on
accuracy reported in Zettersten and Lupyan (2020), Experiment 1A

Let's start by loading the data.

DATA_PATH <- "https://osf.io/a4dzb/download"

zl_data <- read_csv(DATA_PATH)

zl_clean <- zl_data %>%

     clean_names() %>%

     select(experiment, subject, age, condition, block_num, is_right)

zl_exp1a <- zl_clean %>%

     filter(experiment == "1A")

experiment subject age condition block_num is_right

1A p150212 29 low 1 1

1A p150212 29 low 1 1

1A p150212 29 low 1 1

1A p150212 29 low 1 1

1A p150212 29 low 1 0
2 / 11



We start by getting by-subject by-condition means

ms_by_overall<- zl_exp1a %>%

  group_by(subject, condition) %>%

  summarize(prop_right = sum(is_right)/n())

## `summarise()` has grouped output by 'subject'. You can override using the `.groups` argu

subject condition prop_right

p150212 low 0.8750000

p157080 low 0.7083333

p191463 low 0.9583333

p20905 high 0.9583333

p213384 high 1.0000000

p25634 low 0.6666667

p269913 low 0.4583333

p270949 low 0.9166667

p299672 high 0.8333333
3 / 11



Next, let's calculate a point estimate for the mean in each condition.

means_by_condition  <- ms_by_overall %>%

  group_by(condition) %>%

  summarize(mean = mean(prop_right))

condition mean

high 0.8400000

low 0.6766667

4 / 11



Plot the point estimates with geom_point.

ggplot(means_by_condition, aes(x = condition, y = mean)) +

  geom_point(size = 2) + 

  ylim(.5, 1) +

  theme_classic()

5 / 11



Next let's calculate a confidence interval around our estimate.

To start we need the sample size in each condition.

sample_size <- ms_by_overall %>%

  group_by(condition) %>%

  summarize(n = n())

condition n

high 25

low 25

6 / 11



Now, let's calculate the the CI

means_by_condition_with_ci <- ms_by_overall %>%

  group_by(condition) %>%

  summarize(mean = mean(prop_right),

            sd = sd(prop_right),

            n = n()) %>%

  mutate(ci_range_95 =  1.96 * (sd/sqrt(n)),

         ci_lower = mean - ci_range_95,

         ci_upper = mean + ci_range_95)

condition mean sd n ci_range_95 ci_lower ci_upper

high 0.8400000 0.1304817 25 0.0511488 0.7888512 0.8911488

low 0.6766667 0.1876080 25 0.0735423 0.6031243 0.7502090

7 / 11



Plotting the confidence intervals

ggplot(means_by_condition_with_ci, aes(x = condition, y = mean)) +

  geom_point(size = 2) + 

  geom_linerange(aes(ymin = ci_lower, ymax = ci_upper)) +

  ylim(.5, 1) +

  theme_classic()

8 / 11



There's actually a single geom that plots both points and ranges:
geom_pointrange.

ggplot(means_by_condition_with_ci, aes(x = condition, y = mean)) +

  geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) +

  ylim(.5, 1) +

  theme_classic()

9 / 11



There's one small complexity that I've glossed over.

Because we don't actually know the SD for the population
distribution we have to estimate from a distribution called the t-
distribution.

means_by_condition_with_ci_t <- ms_by_overall %>%

  group_by(condition) %>%

  summarize(mean = mean(prop_right),

            sd = sd(prop_right),

            n = n()) %>%

  mutate(ci_range_95 =  qt(1 - (0.05 / 2), n - 1) * (sd/sqrt(n)),

         ci_lower = mean - ci_range_95,

         ci_upper = mean + ci_range_95)

condition mean sd n ci_range_95 ci_lower ci_upper

high 0.8400000 0.1304817 25 0.0538602 0.7861398 0.8938602

low 0.6766667 0.1876080 25 0.0774408 0.5992259 0.7541074

10 / 11



Point estimates with ranges calculated from the t-distribution.

ggplot(means_by_condition_with_ci_t, aes(x = condition, y = mean)) +

  geom_pointrange(aes(ymin = ci_lower, ymax = ci_upper)) +

  ylim(.5, 1) +

  theme_classic()

11 / 11



Summary
• Confidence	intervals	quantify	uncertainty	about	our	estimates	of	the	
population	mean	based	on	a	sample
• Captures	precision	of	the	sampling	process,	not	about	our	beliefs	about	the	
value	of	the	true	population	parameter
• Encourages	thinking	about	plausible	range	of	values	instead	of	a	point	
estimate

• Larger	samples,	populations	with	smaller	variances,	and	lower	
confidence	levels	lead	to	smaller	intervals


