Statistical Foundations: Replication Solutions

20 October 2021 Modern Research Methods

Logistics

- Due Thursday at noon (via Canvas)
- My office hours are virtual today email/talk to me if you'd like to meet
- No lab Friday
- Quiz Monday, as usual

Last time: Potential reasons for replication failure

- 1. Fraud
- 2. Actual change in population effect
- 3. Error in reporting/analysis
- 4. Hidden moderator
- 5. Inadequate materials/description
- 6. Data-depending analysis ("p-hacking"/"HARKing")
- 7. File drawer problem ("publication bias")
- 8. Low study precision

Data-dependent analysis

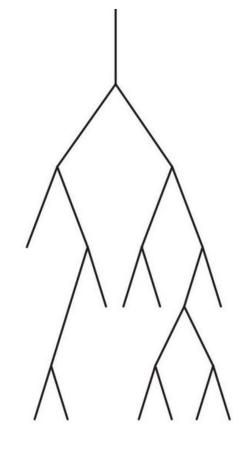
The Statistical Crisis in Science

Data-dependent analysis—a "garden of forking paths"— explains why many statistically significant comparisons don't hold up.

Choosing your analysis based on seeing your data/the outcome of a test ("analytic flexibility")

"p-hacking"/"Questionable research practices" (QRP)

"...it is unacceptably easy to publish *statistically significant* evidence consistent with *any* hypothesis" --Simmons, Nelson, & Simonsohn, 2011



Examples of p-hacking

- Collect more data?
- Should some observations be excluded? Which ones?
- Which conditions should be combined with which ones?
- Which measures should we analyze? Should we transform the measure?
- Which control variables should we consider?
- Should we include pilot data?

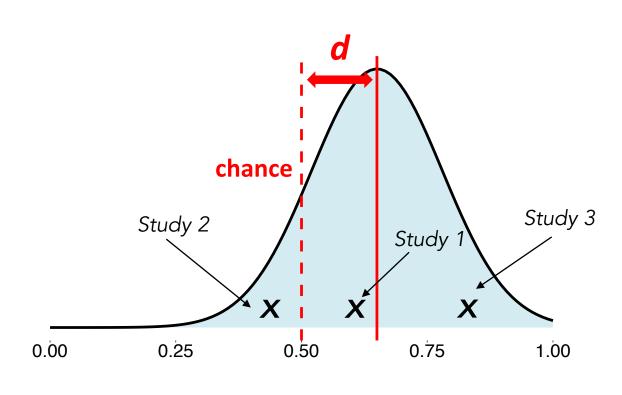
Try your hand at *p*-hacking!

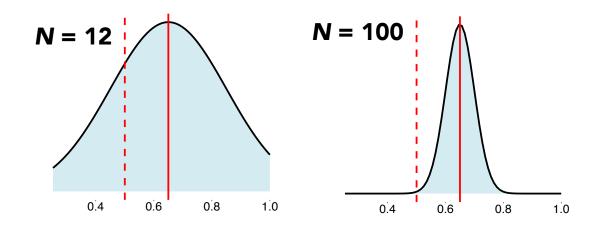
http://shinyapps.org/apps/p-hacker/

Goal: get a publishable finding (i.e. p < .05)

- How many significant p-values can you get?
- What things can you do to increase the likelihood of getting a significant *p*-value?

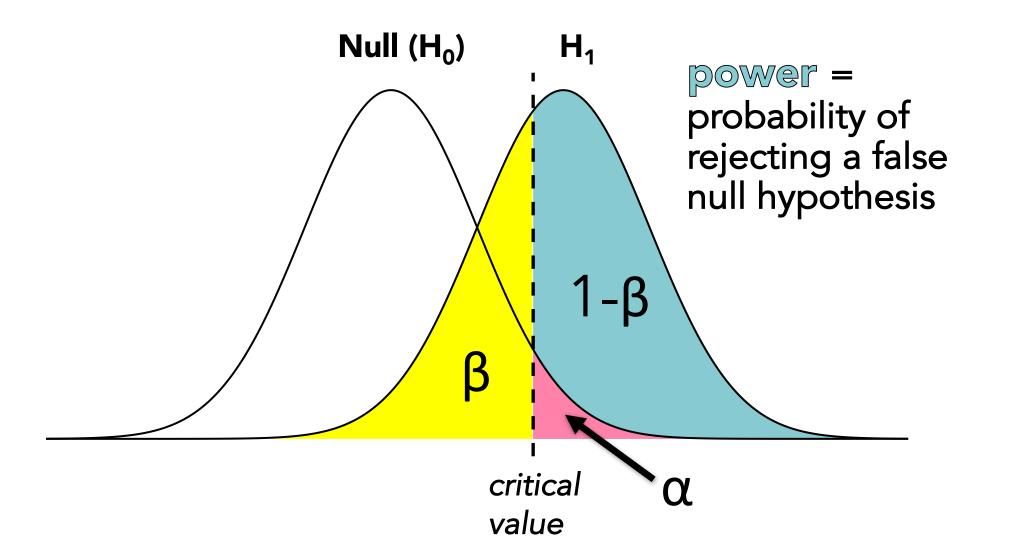
Reason 8: Low study precision



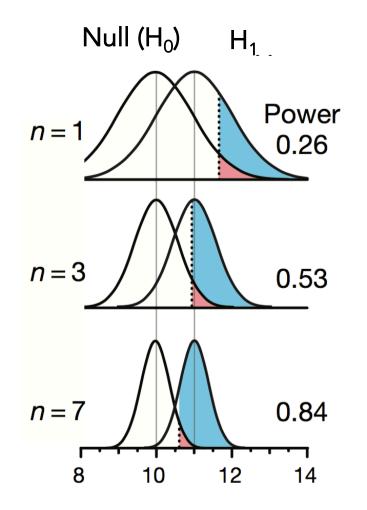


Some expected variability in effect size due to sample size; less variability with larger sample sizes.

Precision related to probability of correctly rejecting null hypothesis



Power is related to sample size and effect size



Low precision -> low power

Power is often low, leading overestimations of effect size

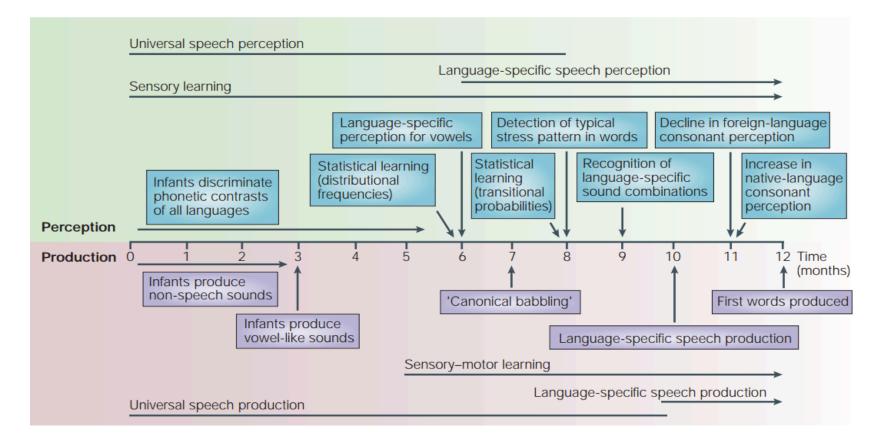
Meta-analysis	Age	Sample size	N effect sizes	N articles	Effect size (SE)	Power	
Gaze following	14 (3–24)	23 (12–63)	32	11	1.08 (0.16)	0.95	
Infant-directed speech preference	4 (0–9)	20 (10-60)	48	16	0.73 (0.13)	0.61	
Concept-label advantage	12 (4–18)	13 (9–32)	48	15	0.45 (0.08)	0.20	
Mutual exclusivity	24 (15-60)	16 (8–72)	58	19	0.81 (0.14)	0.61	
Online word recognition	18 (15–30)	25 (16–95)	14	6	1.24 (0.26)	0.99	
Phonotactic learning	11 (4–16)	18 (8-40)	47	15	0.12 (0.07)	0.06	
Pointing and vocabulary	22 (9–34)	24.5 (6-50)	12	12	0.98 (0.18)	0.92	
Sound symbolism	8 (4-38)	20 (11-40)	44	11	0.22 (0.11)	0.10	
Statistical sound learning	8 (2–11)	15.5 (5–34)	19	11	0.29 (0.14)	0.12	
Native vowel discrimination	7 (0–30)	12 (6–50)	112	29	0.69 (0.09)	0.37	
Nonnative vowel discrimination	8 (2–18)	16 (8–30)	46	14	0.79 (0.24)	0.58	
Word segmentation	8 (6–25)	20 (4-64)	284	68	0.16 (0.03)	0.08	

Potential reasons for replication failure

- 1. Fraud
- 2. Actual change in population effect
- 3. Error in reporting/analysis
- 4. Hidden moderator
- 5. Inadequate materials/description
- 6. Data-depending analysis ("p-hacking"/"HARKing")
- 7. File drawer problem ("publication bias")
- 8. Low study precision

Why does replicability matter?

Our goal as scientists is to build predictive theories



But, if the experiments our theories are built on aren't real, then our theories are bad too.

Kuhl (2004)

How can we increase replicability?

Solution

Reproducibility practices

Reproducibility practices Strategies for reducing rates for failed replications due to false positives

- 1. Fraud
- 2. Actual change in population effect
- 3. Error in reporting/analysis
- 4. Hidden moderator
- 5. Inadequate materials/description
- 6. Data-depending analysis ("phacking"/"HARKing")
- 7. File drawer problem ("publication bias")
- 8. Low study precision

Solutions

- Designed to reduce "questionable research practices", like *p*-hacking.
- And, therefore increase replicability
- 1. Pre-registration register your hypothesis and analysis plan publically before you collecting your data
- 2. Registered reports write the paper and have it reviewed before you collect your data.

Daniel Simons on replication solutions:

https://www.youtube.com/watch?v=LYfZr5poCkQ

Pre-registration

- OSF great tool for registration (essentially, time-stamping)
- All levels of specificity
 - AsPredicted template ("prereg-lite") <u>https://aspredicted.org/</u>
 - All the way through full analytic script capture
- Example preregistration from Lewis & Frank, 2018: <u>https://osf.io/bxpke</u>

Preregistration – in sum:

- It costs nothing and makes you feel good.
- If you're running a study, just try it.
- It'll make you feel like a scientist.

Registered Report

Are the hypotheses well founded?

Are the methods and proposed analyses feasible and sufficiently detailed?

Have the authors included sufficient positive controls to confirm that the study will provide a fair test?

Did the authors follow the approved protocol?

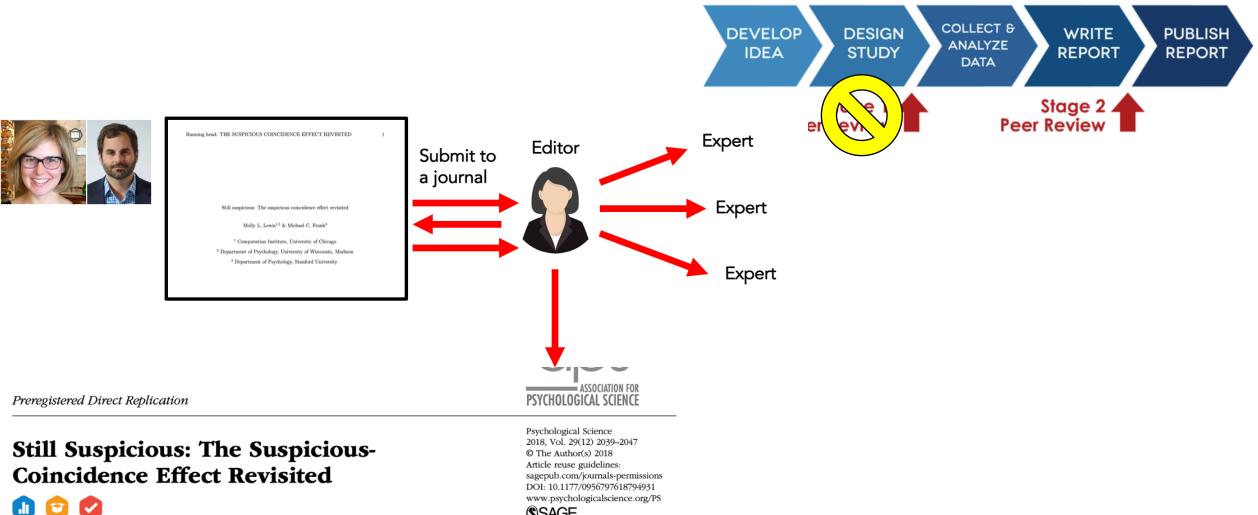
Did positive controls succeed?

Are the conclusions justified by the data?

Slide adopted from Chris Chambers

"provisionally accepted"

c.f. Typical peer-review process



(\$)SAGE

Molly L. Lewis^{1,2} and Michael C. Frank³

¹Computation Institute, University of Chicago; ²Department of Psychology, University of Wisconsin-Madison; and ³Department of Psychology, Stanford University

Solutions

- Designed to reduce "questionable research practices", like *p*-hacking.
- And, therefore increase replicability
- 1. Pre-registration register your hypothesis and analysis plan publically before you collecting your data
- 2. Registered reports write the paper and have it reviewed before you collect your data.

Alternative: Blind analysis (MacCoun & Perlmutter, 2015)

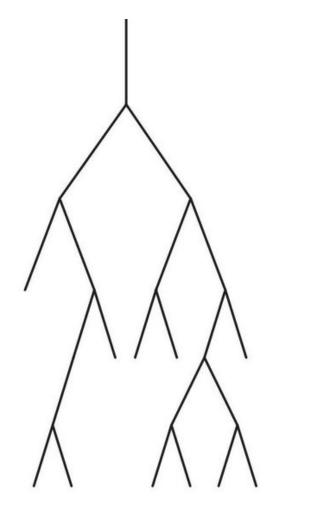
- Practice in particle physics
- Define analysis plan after conducted study, but not on "real data"
- Have a third party perturb the data in some way (data values, labels, or both), then conduct analysis "in the dark"
- Once agreed upon analysis plan, unblind the data and reveal results

BLINDING STRATEGIES

Technique examples	Perturbation	Potential application				
Noising $\theta_{ij} = y_{ij} + n_{ij}$ or $\theta_{ij} = \beta_k + n_{ij}$	Add a random number (from an appropriate statistical distribution) to data points or model parameters.	Testing which of several prevention messages is most effective in reducing smoking.				
Biasing $\theta_{ij} = y_{ij} + b_j$	Obscure differences in experimental conditions by adding a hidden value that is biased in a particular direction.	Estimating whether the costs of a controversial safety regulation exceed its benefits.				
Cell scrambling $\theta_{ij} = y_{\#}$	Shuffle labels for experimental conditions, so that it is unclear which set of results matches which conditions.	Testing a prediction that hard-copy books are better comprehended than audiobooks.				
Item scrambling θ _{ij} =y _{##}	Randomly relabel each data point to de-identify experimental conditions.	Analysing group differences that might be easy to recognize even with noise and bias (for example, effects of neighbourhood and school on crime victimization).				

Various combinations Row scrambling: keep pairs of variables together to preserve correlation. Variable blinding: swap labels of various variables.

Alternative: Multiverse analysis (Steegen, et al, 2016)



- Do all the paths!
- "performing the analysis of interest across the whole set of data sets that arise from different reasonable choices for data processing"
- Then examine how sensitive p-value is to different choices

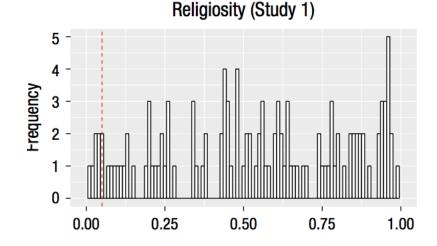
Multiverse analysis example

- Durante, Rae, and Griskevicius, 2013
- Being fertile led single women to become more liberal, less religious, and more likely to vote for Barack Obama.
- In contrast, being fertile led women in committed relationships to become more conservative, more religious, and more likely to vote for Mitt Romney

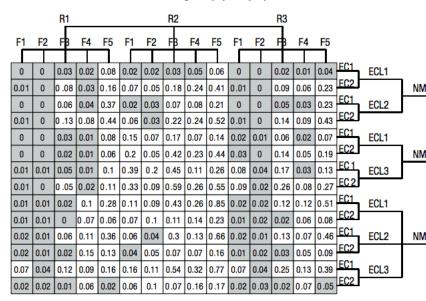
Multiverse analysis example

Table 1. Processing choices

- 1. Assessment of fertility (F)-high vs low.
- (a) F1: high = cycle days 7-14; low = cycle days 17-25(b) F2: high = cycle days 6-14; low = cycle days 17-27
- (c) F3: high = cycle days 9-17; low = cycle days 17-27(c) F3: high = cycle days 9-17; low = cycle days 18-25
- (d) F4: high = cycle days 9-17; low = cycle days 18-25(d) F4: high = cycle days 8-14; low = cycle days 1-7 and
- 15–28 (e) F5: high = cycle days 9–17; low = cycle days 1–8 and 18–28
- 2. Next menstrual onset (NMO)
- (a) NMO1: reported start date previous menstrual onset + computed cycle length
- (b) NMO2: reported start date previous menstrual onset + reported cycle length
- (c) NMO3: reported estimate of next menstrual onset
- 3. Assessment of relationship status (R) (single vs relationship) (a) R1: single = response options 1 and 2; relationship = response options 3 and 4
- (b) R2: single = response option 1; relationship = response options 2, 3, and 4
- (c) R3: single = response option 1; relationship = response options 3 and 4 $\,$
- 4. Exclusion of women based on cycle length (ECL)
- (a) ECL1: no exclusion based on cycle length
- (b) ECL2: exclusion of participants with computed cycle length greater than 25 or less than 35 days
- (c) ECL3: exclusion of participants with reported cycle length greater than 25 or less than 35 days
- 5. Exclusion of women based on certainty ratings of start dates of two previous menstrual periods (EC)
- (a) EC1: no exclusion based on certainty ratings
- (b) EC2: exclusion of participants who are not certain about
- at least one start date (i.e., sure less than 6)



Religiosity (Study 2)



Explore effect of decisions yourself:

https://explorablemultiverse.github.io/examples/dataverse/

Interactive apps to explore multiverse

Linguistic Niche Browser

Explore an aggregation of datasets that test relationships between features of the environment and elements of language. This browser is supplemental material to Lewis and Frank (2016, CogSci Proceedings).

Predictor	Plo	ot	Model Summary Data Summary								
Sum precipitation (cm)		_									. China
Outcome Consonant diversity		1.5 -	•• •	• • ••	•••	•	•	•			* Shiny
Color on the scatter plot indicates language family. Hover over points to identifiy individual languages.		1.0 -			••••		• •	•			
Model fit:	versity	0.5 -									www.fsudio.com
○ simple linear regression	ant div						••			•	
In andom intercept of country	lso	0.0 -									
○ random intercept of family	Col										
O random intercepts of country and family		-0.5 -									_
\bigcirc random intercept and slope of family, intercept of country			• •••	• • •			• •				

-1.0

-1.5

50

100

150

https://mlewis.shinyapps.io/InhBrowser/

Sum precipitation (cm)

250

300

350

200

450

400

Solutions

- Designed to reduce "questionable research practices", like *p*-hacking.
- And, therefore increase replicability
- 1. Pre-registration register your hypothesis and analysis plan publically before you collecting your data
- 2. Registered reports write the paper and have it reviewed before you collect your data.
- 3. Blind analysis conduct analysis blind to meaning in data
- 4. Multiverse analysis do all "forking paths" in analysis

Next up: Meta-analysis!

- How do you combine effect sizes from lots of different replications?
- "Quantitative literature review"